Skip to main content
Log in

S 2 × S 3 geometries in ABJM and giant gravitons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a new NS5-brane solution in AdS 4 × \( \mathbb{C}{{\mathbb{P}}^3} \) with S 2 × S 3 topology. This solution belongs to the general class of non-Einstein N 11 metrics to which T 1,1 belongs, and carries a non-vanishing D0-brane charge. In eleven dimensions it gives rise to a squashed S 2 × S 3 M5-brane giant graviton which is now of the N 10 type. The energies of both solutions satisfy the BPS bound E = kQ/2, indicating supersymmetric configurations, where Q is interpreted as D0-brane charge for the NS5-brane and as angular momentum for the dynamically stable M5-brane giant graviton. The ground state is degenerate with a spherical D2 or M2-brane, rather than with a point-like object. Moreover, while the charge of the spherical 2-brane can be arbitrary, the charge of the S 2 × S 3 5-brane is bounded by N/2, with N the rank of the ABJM gauge group, a manifestation of the stringy exclusion principle. A microscopic description, suitable for the study of the finite ’t Hooft coupling region, is provided in terms of spherical D2 or M2-branes expanding into fuzzy 3-spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].

    MathSciNet  Google Scholar 

  6. R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonsWith strings attached I, JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].

    Article  Google Scholar 

  7. R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonsWith strings attached II, JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].

    Article  Google Scholar 

  8. D. Bekker, R. de Mello Koch and M. Stephanou, Giant gravitonsWith strings attached III, JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. D. Berenstein, D.H. Correa and S.E. Vazquez, A study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Berenstein and R. Cotta, Aspects of emergent geometry in the AdS/CFT context, Phys. Rev. D 74 (2006) 026006 [hep-th/0605220] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Berenstein and D. Trancanelli, Three-dimensional N = 6 SCFTs and their membrane dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. M. Sheikh-Jabbari and J. Simon, On half-BPS states of the ABJM theory, JHEP 08 (2009) 073 [arXiv:0904.4605] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Berenstein and J. Park, The BPS spectrum of monopole operators in ABJM: towards a field theory description of the giant torus, JHEP 06 (2010) 073 [arXiv:0906.3817] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T.K. Dey, Exact large R-charge correlators in ABJM theory, JHEP 08 (2011) 066 [arXiv:1105.0218] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. de Mello Koch, B.A.E. Mohammed, J. Murugan and A. Prinsloo, Beyond the planar limit in ABJM, JHEP 05 (2012) 037 [arXiv:1202.4925] [INSPIRE].

    Article  Google Scholar 

  22. P. Caputa and B.A.E. Mohammed, From Schurs to giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Nishioka and T. Takayanagi, Fuzzy ring from M2-brane giant torus, JHEP 10 (2008) 082 [arXiv:0808.2691] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Herrero, Y. Lozano and M. Picos, Dielectric 5-branes and giant gravitons in ABJM, JHEP 08 (2011) 132 [arXiv:1107.5475] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Giovannoni, J. Murugan and A. Prinsloo, The giant graviton on AdS 4 × CP 3Another step towards the emergence of geometry, JHEP 12 (2011) 003 [arXiv:1108.3084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Hamilton, J. Murugan, A. Prinsloo and M. Strydom, A note on dual giant gravitons in AdS 4 × CP 3, JHEP 04 (2009) 132 [arXiv:0901.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Kim, N. Kim and J. Hun Lee, Rotating membranes in AdS 4 × M 1,1,1, JHEP 03 (2010) 122 [arXiv:1001.2902] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.L. Carballo, A.R. Lugo and J.G. Russo, Tensionless supersymmetric M2 branes in AdS 4 × S 7 and giant diabolo, JHEP 11 (2009) 118 [arXiv:0909.4269] [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Gutierrez, Y. Lozano and D. Rodriguez-Gomez, Charged particle-like branes in ABJM, JHEP 09 (2010) 101 [arXiv:1004.2826] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Murugan and A. Prinsloo, ABJM dibaryon spectroscopy, JHEP 05 (2011) 129 [arXiv:1103.1163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Hirano, C. Kristjansen and D. Young, Giant gravitons on AdS 4 × CP 3 and their holographic three-point functions, JHEP 07 (2012) 006 [arXiv:1205.1959] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. Janssen, Y. Lozano and D. Rodríguez-Gómez, A microscopical description of giant gravitons. 2. The AdS 5 × S 5 background, Nucl. Phys. B 669 (2003) 363 [hep-th/0303183] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Nastase, C. Papageorgakis and S. Ramgoolam, The fuzzy S 2 structure of M2-M 5 systems in ABJM membrane theories, JHEP 05 (2009) 123 [arXiv:0903.3966] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. B. Nilsson and C. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Hamilton, J. Murugan and A. Prinsloo, Lessons from giant gravitons on AdS 5 × T 1,1, JHEP 06 (2010) 017 [arXiv:1001.2306] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Bergshoeff, Y. Lozano and T. Ortín, Massive branes, Nucl. Phys. B 518 (1998) 363 [hep-th/9712115] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Eyras, B. Janssen and Y. Lozano, Five-branes, K K monopoles and T duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Sadri and M. Sheikh-Jabbari, Giant hedgehogs: spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 [hep-th/0312155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Prokushkin and M.M. Sheikh-Jabbari, Squashed giants: bound states of giant gravitons, JHEP 07 (2004) 077 [hep-th/0406053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Ali-Akbari and M. Sheikh-Jabbari, Electrified BPS giants: BPS configurations on giant gravitons with static electric field, JHEP 10 (2007) 043 [arXiv:0708.2058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Mandelstam, Vortices and quark confinement in non-abelian gauge theories, Phys. Rep. C 23 (1976) 237.

    ADS  Google Scholar 

  44. G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. F. Quevedo and C.A. Trugenberger, Phases of antisymmetric tensor field theories, Nucl. Phys. B 501 (1997) 143 [hep-th/9604196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. B. Julia and G. Toulouse, The many defect problem: gauge like variables for ordered media containing defects, J. Phys. Lett. 40 (1979) 396 [INSPIRE].

    Google Scholar 

  47. B. Janssen, Y. Lozano and D. Rodriguez-Gomez, Giant gravitons and fuzzy CP 2, Nucl. Phys. B 712 (2005) 371 [hep-th/0411181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. Y. Lozano, Noncommutative branes from M-theory, Phys. Rev. D 64 (2001) 106011 [hep-th/0012137] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. Y. Lozano, M. Picos, K. Sfetsos and K. Siampos, ABJM baryon stability and Myers effect, JHEP 07 (2011) 032 [arXiv:1105.0939] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Prinsloo.

Additional information

ArXiv ePrint: 1303.3748

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, Y., Prinsloo, A. S 2 × S 3 geometries in ABJM and giant gravitons. J. High Energ. Phys. 2013, 148 (2013). https://doi.org/10.1007/JHEP04(2013)148

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)148

Keywords

Navigation