Skip to main content
Log in

Axionic co-genesis of baryon, dark matter and dark radiation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We argue that coherent oscillations of the axion field excited by the misalignment mechanism and non-thermal leptogenesis by the saxion decay can naturally explain the observed abundance of dark matter and baryon asymmetry, thus providing a solution to the baryon-dark matter coincidence problem. The successful axionic co-genesis requires a supersymmetry breaking scale of \( \mathcal{O}\left( {1{0^{6-7 }}} \right) \) GeV, which is consistent with the recently discovered standard-model like Higgs boson of mass about 126 GeV. Although the saxion generically decays into a pair of axions, their abundance sensitively depends on the saxion stabilization mechanism as well as couplings with the Higgs field. We discuss various ways to make the saxion dominantly decay into the right-handed neutrinos rather than into axions, and show that the abundance of axion dark radiation can be naturally as small as \( \varDelta {N_{eff }}\lesssim \mathcal{O}\left( {0.1} \right) \), which is allowed by the Planck data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  2. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  3. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  4. J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H.-Y. Cheng, The strong CP problem revisited, Phys. Rept. 158 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Ringwald, Exploring the role of axions and other WISPs in the dark universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].

    Article  Google Scholar 

  8. M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, arXiv:1301.1123 [INSPIRE].

  9. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  10. W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Langacker, R.D. Peccei and T. Yanagida, Invisible axions and light neutrinos: are they connected?, Mod. Phys. Lett. A 1 (1986) 541 [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559] [INSPIRE].

    ADS  Google Scholar 

  15. E.J. Chun, D. Comelli and D.H. Lyth, The abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry, Phys. Rev. D 62 (2000) 095013 [hep-ph/0008133] [INSPIRE].

    ADS  Google Scholar 

  16. K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [INSPIRE].

    Article  ADS  Google Scholar 

  17. T. Higaki, K. Kamada and F. Takahashi, Higgs, moduli problem, baryogenesis and large volume compactifications, JHEP 09 (2012) 043 [arXiv:1207.2771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

    ADS  Google Scholar 

  20. W. Fischler and J. Meyers, Dark radiation emerging after big bang nucleosynthesis?, Phys. Rev. D 83 (2011) 063520 [arXiv:1011.3501] [INSPIRE].

    ADS  Google Scholar 

  21. J. Hasenkamp, Dark radiation from the axino solution of the gravitino problem, Phys. Lett. B 707 (2012) 121 [arXiv:1107.4319] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.L. Menestrina and R.J. Scherrer, Dark radiation from particle decays during big bang nucleosynthesis, Phys. Rev. D 85 (2012) 047301 [arXiv:1111.0605] [INSPIRE].

    ADS  Google Scholar 

  23. T. Kobayashi, F. Takahashi, T. Takahashi and M. Yamaguchi, Dark radiation from modulated reheating, JCAP 03 (2012) 036 [arXiv:1111.1336] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-thermal dark matter mimicking an additional neutrino species in the early universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599] [INSPIRE].

    ADS  Google Scholar 

  25. K.S. Jeong and F. Takahashi, Light Higgsino from axion dark radiation, JHEP 08 (2012) 017 [arXiv:1201.4816] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Choi, K.-Y. Choi and C.S. Shin, Dark radiation and small-scale structure problems with decaying particles, Phys. Rev. D 86 (2012) 083529 [arXiv:1208.2496] [INSPIRE].

    ADS  Google Scholar 

  27. P. Graf and F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures, JCAP 02 (2013) 018 [arXiv:1208.2951] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Hasenkamp and J. Kersten, Dark radiation from particle decay: cosmological constraints and opportunities, arXiv:1212.4160 [INSPIRE].

  29. K.J. Bae, H. Baer and A. Lessa, Dark radiation constraints on mixed axion/neutralino dark matter, arXiv:1301.7428 [INSPIRE].

  30. K. Nakayama, F. Takahashi and T.T. Yanagida, A theory of extra radiation in the universe, Phys. Lett. B 697 (2011) 275 [arXiv:1010.5693] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Z. Hou et al., Constraints on cosmology from the cosmic microwave background power spectrum of the 2500-square degree SPT-SZ survey, arXiv:1212.6267 [INSPIRE].

  32. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].

  33. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  34. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  35. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  36. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  40. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  42. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13–14 Feb 1979, O. Sawada and A. Sugamoto eds., KEK Report KEK-79-18-95 [INSPIRE].

  44. T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Proceedings of the Supergravity Workshop, New York U.S.A., 27–28 Sep 1979, P. Van Nieuwenhuizen and D.Z. Freedman eds., North-Holland, Amsterdam Netherlands (1979), CERN Print-80-0576 [INSPIRE].

  46. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  47. E.J. Chun and A. Lukas, Axino mass in supergravity models, Phys. Lett. B 357 (1995) 43 [hep-ph/9503233] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  49. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Kawasaki, N. Kitajima and K. Nakayama, Cosmological aspects of inflation in a supersymmetric axion model, Phys. Rev. D 83 (2011) 123521 [arXiv:1104.1262] [INSPIRE].

    ADS  Google Scholar 

  51. B. Feldstein and T.T. Yanagida, Why is the supersymmetry breaking scale unnaturally high?, Phys. Lett. B 720 (2013) 166 [arXiv:1210.7578] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Hiramatsu, M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, Improved estimation of radiated axions from cosmological axionic strings, Phys. Rev. D 83 (2011) 123531 [arXiv:1012.5502] [INSPIRE].

    ADS  Google Scholar 

  53. T. Hiramatsu, M. Kawasaki and K. Saikawa, Evolution of string-wall networks and axionic domain wall problem, JCAP 08 (2011) 030 [arXiv:1012.4558] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Graf and F.D. Steffen, Thermal axion production in the primordial quark-gluon plasma, Phys. Rev. D 83 (2011) 075011 [arXiv:1008.4528] [INSPIRE].

    ADS  Google Scholar 

  55. K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. M.S. Turner, Cosmic and local mass density of invisible axions, Phys. Rev. D 33 (1986) 889 [INSPIRE].

    ADS  Google Scholar 

  57. K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP 09 (2008) 005 [arXiv:0806.0497] [INSPIRE].

    Article  ADS  Google Scholar 

  58. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Flanz, E.A. Paschos and U. Sarkar, Baryogenesis from a lepton asymmetric universe, Phys. Lett. B 345 (1995) 248 [Erratum ibid. B 382 (1996) 447] [hep-ph/9411366] [INSPIRE].

  60. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

    Article  ADS  Google Scholar 

  61. W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays, Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].

    Article  ADS  Google Scholar 

  62. P.-H. Gu and U. Sarkar, Leptogenesis bound on spontaneous symmetry breaking of global lepton number, Eur. Phys. J. C 71 (2011) 1560 [arXiv:0909.5468] [INSPIRE].

    ADS  Google Scholar 

  63. M. Kawasaki, K. Nakayama, T. Sekiguchi, T. Suyama and F. Takahashi, Non-Gaussianity from isocurvature perturbations, JCAP 11 (2008) 019 [arXiv:0808.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Kawasaki, K. Nakayama, T. Sekiguchi, T. Suyama and F. Takahashi, A general analysis of non-Gaussianity from isocurvature perturbations, JCAP 01 (2009) 042 [arXiv:0810.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  65. D. Langlois, F. Vernizzi and D. Wands, Non-linear isocurvature perturbations and non-Gaussianities, JCAP 12 (2008) 004 [arXiv:0809.4646] [INSPIRE].

    Article  ADS  Google Scholar 

  66. E. Kawakami, M. Kawasaki, K. Nakayama and F. Takahashi, Non-Gaussianity from isocurvature perturbations: analysis of trispectrum, JCAP 09 (2009) 002 [arXiv:0905.1552] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D. Langlois and A. Lepidi, General treatment of isocurvature perturbations and non-Gaussianities, JCAP 01 (2011) 008 [arXiv:1007.5498] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D. Langlois and T. Takahashi, Primordial trispectrum from isocurvature fluctuations, JCAP 02 (2011) 020 [arXiv:1012.4885] [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Kobayashi, R. Kurematsu and F. Takahashi, Isocurvature constraints and anharmonic effects on QCD axion dark matter, arXiv:1304.0922 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Sik Jeong.

Additional information

ArXiv ePrint: 1302.1486

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, K.S., Takahashi, F. Axionic co-genesis of baryon, dark matter and dark radiation. J. High Energ. Phys. 2013, 121 (2013). https://doi.org/10.1007/JHEP04(2013)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)121

Keywords

Navigation