Skip to main content
Log in

Chiral phase transition of QCD at finite chemical potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the framework of Dyson-Schwinger equation (DSE) approach, we propose a chemical potential dependent effective gluon propagator and the quark gap equation is solved with such a gluon propagator. It is found for the first time in DSE approach that with light current quark mass m ≠ 0, the Wigner solution will appear at some chemical potential μ W. Based on this, the chiral phase transition at finite chemical potential is studied and the result shows that it is a first-order phase transition. The results are compared with the known results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stephanov, QCD phase diagram: An Overview, PoS(LAT2006) 024 [hep-lat/0701002] [INSPIRE].

  2. C.D. Roberts and A.G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994) 477 [hep-ph/9403224] [INSPIRE].

    Article  ADS  Google Scholar 

  3. C.D. Roberts and S.M. Schmidt, Dyson-Schwinger equations: Density, temperature and continuum strong QCD, Prog. Part. Nucl. Phys. 45 (2000) S1 [nucl-th/0005064] [INSPIRE].

    Article  ADS  Google Scholar 

  4. H.-S. Zong, W.-M. Sun, J.-L. Ping, X.-f. Lu and F. Wang, Is there only one solution of the Dyson-Schwinger equation for quark propagator in the case of nonzero current quark mass?, Chin. Phys. Lett. 22 (2005) 3036 [hep-ph/0402164] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Cahill and C.D. Roberts, Soliton Bag Models of Hadrons from QCD, Phys. Rev. D 32 (1985) 2419 [INSPIRE].

    ADS  Google Scholar 

  6. P.C. Tandy, Hadron physics from the global color model of QCD, Prog. Part. Nucl. Phys. 39 (1997) 117 [nucl-th/9705018] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L. Chang, Y.-X. Liu, M.S. Bhagwat, C.D. Roberts and S.V. Wright, Dynamical chiral symmetry breaking and a critical mass, Phys. Rev. C 75 (2007) 015201 [nucl-th/0605058] [INSPIRE].

    ADS  Google Scholar 

  8. R. Williams, C. Fischer and M. Pennington, Anti-q q condensate for light quarks beyond the chiral limit, Phys. Lett. B 645 (2007) 167 [hep-ph/0612061] [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Williams, C. Fischer and M. Pennington, Quark condensates: Flavour dependence, Acta Phys. Polon. B 38 (2007) 2803 [hep-ph/0703255] [INSPIRE].

    ADS  Google Scholar 

  10. Y. Jiang, H. Gong, W.-M. Sun and H.-S. Zong, The Wigner solution of quark gap equation at nonzero current quark mass and partial restoration of chiral symmetry at finite chemical potential, Phys. Rev. D 85 (2012) 034031 [arXiv:1107.5111] [INSPIRE].

    ADS  Google Scholar 

  11. W. Yuan, H. Chen and Y.-X. Liu, Dyson-Schwinger equation and quantum phase transitions in massless QCD, Phys. Lett. B 637 (2006) 69 [arXiv:0711.0363] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H. Chen et al., Chemical potential and the gap equation, Phys. Rev. D 78 (2008) 116015 [arXiv:0807.2755] [INSPIRE].

    ADS  Google Scholar 

  13. H. Chen, M. Baldo, G. Burgio and H.-J. Schulze, Hybrid stars with the Dyson-Schwinger quark model, Phys. Rev. D 84 (2011) 105023 [arXiv:1107.2497] [INSPIRE].

    ADS  Google Scholar 

  14. J. Rusnak and R. Furnstahl, Two point fermion correlation functions at finite density, Z. Phys. A 352 (1995) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  15. H.-s. Zong, L. Chang, F.-y. Hou, W.-m. Sun and Y.-x. Liu, New approach for calculating the dressed quark propagator at finite chemical potential, Phys. Rev. C 71 (2005) 015205 [INSPIRE].

    ADS  Google Scholar 

  16. Y. Jiang, Y.-m. Shi, H.-t. Feng, W.-m. Sun and H.-s. Zong, Quark-meson vertices and pion properties at finite chemical potential, Phys. Rev. C 78 (2008) 025214 [INSPIRE].

    ADS  Google Scholar 

  17. P. Maris and C.D. Roberts, Pi- and K meson Bethe-Salpeter amplitudes, Phys. Rev. C 56 (1997) 3369 [nucl-th/9708029] [INSPIRE].

    ADS  Google Scholar 

  18. P. Maris and P.C. Tandy, Bethe-Salpeter study of vector meson masses and decay constants, Phys. Rev. C 60 (1999) 055214 [nucl-th/9905056] [INSPIRE].

    ADS  Google Scholar 

  19. P. Maris, A. Raya, C. Roberts and S. Schmidt, Facets of confinement and dynamical chiral symmetry breaking, Eur. Phys. J. A 18 (2003) 231 [nucl-th/0208071] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.I. Kapusta, Finite-temperature field theory, Cambridge University Press, Cambridge U.K. (1989), pg. 162.

  21. S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu and C.D. Roberts, Phase diagram and critical endpoint for strongly-interacting quarks, Phys. Rev. Lett. 106 (2011) 172301 [arXiv:1011.2876] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Cahill and C.D. Roberts, Soliton Bag Models of Hadrons from QCD, Phys. Rev. D 32 (1985) 2419 [INSPIRE].

    ADS  Google Scholar 

  23. J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].

    ADS  Google Scholar 

  24. K. Stam, Dynamical chiral symmetry breaking, Phys. Lett. B 152 (1985) 238 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Klevansky, The Nambu-Jona-Lasinio model of quantum chromodynamics, Rev. Mod. Phys. 64 (1992) 649 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Blaschke, C.D. Roberts and S.M. Schmidt, Thermodynamic properties of a simple, confining model, Phys. Lett. B 425 (1998) 232 [nucl-th/9706070] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. He, J.-F. Li, W.-M. Sun and H.-S. Zong, Quark number susceptibility around the critical end point, Phys. Rev. D 79 (2009) 036001 [arXiv:0811.1835] [INSPIRE].

    ADS  Google Scholar 

  28. A.M. Halasz, A. Jackson, R. Shrock, M.A. Stephanov and J. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [INSPIRE].

    ADS  Google Scholar 

  29. H.-s. Zong and W.-m. Sun, The Calculation of the equation of state of QCD at finite chemical potential and zero temperature, Phys. Rev. D 78 (2008) 054001 [arXiv:0810.2843] [INSPIRE].

    ADS  Google Scholar 

  30. D.-k. He, X.-x. Ruan, Y. Jiang, W.-M. Sun and H.-S. Zong, A model study of quark-number susceptibility at finite chemical potential and temperature, Phys. Lett. B 680 (2009) 432 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Shi Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Chen, H., Sun, WM. et al. Chiral phase transition of QCD at finite chemical potential. J. High Energ. Phys. 2013, 14 (2013). https://doi.org/10.1007/JHEP04(2013)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)014

Keywords

Navigation