Skip to main content
Log in

Light sterile neutrinos and short baseline neutrino oscillation anomalies

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains only one eV-scale sterile neutrino but with an effective non-unitary mixing matrix between the light sterile and active neutrinos. We find that though this may explain the anomalies, if the non-unitarity originates from a heavy sterile neutrino with a large (fine-tuned) mixing angle, this scenario is highly constrained by cosmological and laboratory observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  2. LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    ADS  Google Scholar 

  3. KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations muon-anti-neutrino → electron-anti-neutrino from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].

    ADS  Google Scholar 

  4. E. Church, K. Eitel, G.B. Mills and M. Steidl, Statistical analysis of different muon-anti-neutrino → electron-anti-neutrino searches, Phys. Rev. D 66 (2002) 013001 [hep-ex/0203023] [INSPIRE].

    ADS  Google Scholar 

  5. MiniBooNE collaboration, A. Aguilar-Arevalo et al., Unexplained excess of electron-like events from a 1 GeV neutrino beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].

    Article  ADS  Google Scholar 

  6. The MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for \( {\overline \nu_{\mu }} \to {\overline \nu_e} \) oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].

    Article  ADS  Google Scholar 

  7. MiniBooNE collaboration, Z. Djurcic, MiniBooNE oscillation results 2011, arXiv:1201.1519 [INSPIRE].

  8. G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  9. E. Akhmedov and T. Schwetz, MiniBooNE and LSND data: non-standard neutrino interactions in a (3 + 1) scheme versus (3 + 2) oscillations, JHEP 10 (2010) 115 [arXiv:1007.4171] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Giunti and M. Laveder, 3 + 1 and 3 + 2 sterile neutrino fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].

    ADS  Google Scholar 

  12. A. de Gouvêa, See-saw energy scale and the LSND anomaly, Phys. Rev. D 72 (2005) 033005 [hep-ph/0501039] [INSPIRE].

    ADS  Google Scholar 

  13. J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A.E. Nelson, Effects of CP-violation from neutral heavy fermions on neutrino oscillations and the LSND/MiniBooNE anomalies, Phys. Rev. D 84 (2011) 053001 [arXiv:1010.3970] [INSPIRE].

    ADS  Google Scholar 

  15. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [INSPIRE].

    ADS  Google Scholar 

  16. S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Fernandez-Martinez, M. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [INSPIRE].

    ADS  Google Scholar 

  18. SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

    ADS  Google Scholar 

  19. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    ADS  Google Scholar 

  20. C. Giunti and M. Laveder, Statistical significance of the gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].

    ADS  Google Scholar 

  21. J. Conrad and M. Shaevitz, Limits on electron neutrino disappearance from the KARMEN and LSND ν e - Carbon cross section data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].

    ADS  Google Scholar 

  22. M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

    ADS  Google Scholar 

  23. M. Gonzalez-Garcia and Y. Nir, Neutrino masses and mixing: evidence and implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Mohapatra, S. Antusch, K. Babu, G. Barenboim, M.-C. Chen, et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Langacker, The standard model and beyond, Taylor and Francis, Boca Raton U.S.A. (2010).

    Google Scholar 

  27. P. Langacker, A mechanism for ordinary sterile neutrino mixing, Phys. Rev. D 58 (1998) 093017 [hep-ph/9805281] [INSPIRE].

    ADS  Google Scholar 

  28. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Langacker, Neutrino masses from the top down, arXiv:1112.5992 [INSPIRE].

  30. M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge trimming of neutrino masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].

    ADS  Google Scholar 

  31. J. Sayre, S. Wiesenfeldt and S. Willenbrock, Sterile neutrinos and global symmetries, Phys. Rev. D 72 (2005) 015001 [hep-ph/0504198] [INSPIRE].

    ADS  Google Scholar 

  32. P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R. Foot and R. Volkas, Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, Phys. Rev. D 52 (1995) 6595 [hep-ph/9505359] [INSPIRE].

    ADS  Google Scholar 

  34. Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6607 [hep-ph/9505385] [INSPIRE].

    ADS  Google Scholar 

  35. G. Dvali and Y. Nir, Naturally light sterile neutrinos in gauge mediated supersymmetry breaking, JHEP 10 (1998) 014 [hep-ph/9810257] [INSPIRE].

    Article  ADS  Google Scholar 

  36. N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].

    ADS  Google Scholar 

  37. T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].

    ADS  Google Scholar 

  38. K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [INSPIRE].

    ADS  Google Scholar 

  39. E. Ma, Neutrino masses in an extended gauge model with E 6 particle content, Phys. Lett. B 380 (1996) 286 [hep-ph/9507348] [INSPIRE].

    ADS  Google Scholar 

  40. F. Borzumati, K. Hamaguchi and T. Yanagida, Supersymmetric seesaw model for the (1 + 3) scheme of neutrino masses, Phys. Lett. B 497 (2001) 259 [hep-ph/0011141] [INSPIRE].

    ADS  Google Scholar 

  41. K. Babu and G. Seidl, Chiral gauge models for light sterile neutrinos, Phys. Rev. D 70 (2004) 113014 [hep-ph/0405197] [INSPIRE].

    ADS  Google Scholar 

  42. H. Zhang, Light sterile neutrino in the minimal extended seesaw, arXiv:1110.6838 [INSPIRE].

  43. J. Barry, W. Rodejohann and H. Zhang, Light sterile neutrinos: models and phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Barry, W. Rodejohann and H. Zhang, Sterile neutrinos for warm dark matter and the reactor anomaly in flavor symmetry models, JCAP 01 (2012) 052 [arXiv:1110.6382] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Casas and A. Ibarra, Oscillating neutrinos and muon → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A.Y. Smirnov and R. Zukanovich Funchal, Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Phys. Rev. D 74 (2006) 013001 [hep-ph/0603009] [INSPIRE].

    ADS  Google Scholar 

  47. A. Donini, P. Hernández, J. Lopez-Pavon and M. Maltoni, Minimal models with light sterile neutrinos, JHEP 07 (2011) 105 [arXiv:1106.0064] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Blennow and E. Fernandez-Martinez, Parametrization of seesaw models and light sterile neutrinos, Phys. Lett. B 704 (2011) 223 [arXiv:1107.3992] [INSPIRE].

    ADS  Google Scholar 

  49. Z.-Z. Xing, A full parametrization of the 6 × 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Phys. Rev. D 85 (2012) 013008 [arXiv:1110.0083] [INSPIRE].

    ADS  Google Scholar 

  50. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  52. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  53. E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].

    ADS  Google Scholar 

  54. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  55. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  56. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].

    ADS  Google Scholar 

  58. C. Giunti and M. Laveder, Status of 3 + 1 neutrino mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].

    ADS  Google Scholar 

  59. C. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, et al., Final results from phase II of the Mainz neutrino mass search in tritium β decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].

    Article  ADS  Google Scholar 

  60. V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin et al., Direct search for neutrino mass and anomaly in the tritium β-spectrum: status ofTroitsk neutrino massexperiment, Nucl. Phys. Proc. Suppl. 91 (2001) 280.

    Article  ADS  Google Scholar 

  61. KATRIN collaboration, T. Thummler, Direct neutrino mass measurements, Phys. Part. Nucl. 42 (2011) 590 [INSPIRE].

    Article  Google Scholar 

  62. A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino phenomenology of very low-energy seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].

    ADS  Google Scholar 

  63. H. Klapdor-Kleingrothaus and I. Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [INSPIRE].

    ADS  Google Scholar 

  64. CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0 neutrino ββ-decay of Te-130, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [INSPIRE].

    ADS  Google Scholar 

  65. CUORE collaboration, C. Bucci, Final results of Cuoricino and status of CUORE, Nucl. Phys. Proc. Suppl. 217 (2011) 41.

    Article  ADS  Google Scholar 

  66. EXO collaboration, R. Gornea, Search for double β decay with the EXO-200 TPC and prospects for barium ion tagging in liquid XENON, J. Phys. Conf. Ser. 309 (2011) 012003 [INSPIRE].

    Article  ADS  Google Scholar 

  67. Majorana collaboration, C. Aalseth et al., The Majorana experiment, Nucl. Phys. Proc. Suppl. 217 (2011) 44.

    Article  ADS  Google Scholar 

  68. NEMO-3 collaboration, R.L. Flack, NEMO-3 and SuperNEMO: a search for zero neutrino double β decay, Nucl. Phys. Proc. Suppl. 217 (2011) 53.

    Article  ADS  Google Scholar 

  69. GERDA collaboration, G. Meierhofer, GERDA: a new neutrinoless double β experiment using Ge-76, J. Phys. Conf. Ser. 312 (2011) 072011 [INSPIRE].

    Article  ADS  Google Scholar 

  70. CANDLES collaboration, I. Ogawa et al., Study of Ca-48 double β decay by candles, J. Phys. Conf. Ser. 312 (2011) 072014 [INSPIRE].

    Article  ADS  Google Scholar 

  71. S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].

    Article  ADS  Google Scholar 

  72. D. Hernandez and A.Y. Smirnov, Active to sterile neutrino oscillations: coherence and MINOS results, Phys. Lett. B 706 (2012) 360 [arXiv:1105.5946] [INSPIRE].

    ADS  Google Scholar 

  73. R. Gandhi and P. Ghoshal, Atmospheric neutrinos as a probe of eV 2 -scale active-sterile oscillations, arXiv:1108.4360 [INSPIRE].

  74. V. Barger, Y. Gao and D. Marfatia, Is there evidence for sterile neutrinos in IceCube data?, Phys. Rev. D 85 (2012) 011302 [arXiv:1109.5748] [INSPIRE].

    ADS  Google Scholar 

  75. A. de Gouvêa and W.-C. Huang, Constraining the (low-energy) type-I seesaw, arXiv:1110.6122 [INSPIRE].

  76. B. Bhattacharya, A.M. Thalapillil and C.E. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, arXiv:1111.4225 [INSPIRE].

  77. Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How additional massless neutrinos affect the cosmic microwave background damping tail, arXiv:1104.2333 [INSPIRE].

  78. J. Dunkley, R. Hlozek, J. Sievers, V. Acquaviva, P. Ade, et al., The Atacama cosmology telescope: cosmological parameters from the 2008 power spectra, Astrophys. J. 739 (2011) 52 [arXiv:1009.0866] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust cosmological bounds on neutrinos and their combination with oscillation results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].

    Article  ADS  Google Scholar 

  80. E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Constraints on massive sterile plus active neutrino species in non minimal cosmologies, arXiv:1112.4661 [INSPIRE].

  81. A.X. Gonzalez-Morales, R. Poltis, B.D. Sherwin and L. Verde, Are priors responsible for cosmology favoring additional neutrino species?, arXiv:1106.5052 [INSPIRE].

  82. J. Hamann, Evidence for extra radiation? profile likelihood versus bayesian posterior, JCAP 03 (2012) 021 [arXiv:1110.4271] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

    ADS  Google Scholar 

  84. J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].

    Article  ADS  Google Scholar 

  85. H.-S. Kang and G. Steigman, Cosmological constraints on neutrino degeneracy, Nucl. Phys. B 372 (1992) 494 [INSPIRE].

    Article  ADS  Google Scholar 

  86. V. Barger, J.P. Kneller, P. Langacker, D. Marfatia and G. Steigman, Hiding relativistic degrees of freedom in the early universe, Phys. Lett. B 569 (2003) 123 [hep-ph/0306061] [INSPIRE].

    ADS  Google Scholar 

  87. G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, Constraining the cosmic radiation density due to lepton number with big bang nucleosynthesis, JCAP 03 (2011) 035 [arXiv:1011.0916] [INSPIRE].

    Article  ADS  Google Scholar 

  88. R. Foot and R. Volkas, Reconciling sterile neutrinos with big bang nucleosynthesis, Phys. Rev. Lett. 75 (1995) 4350 [hep-ph/9508275] [INSPIRE].

    Article  ADS  Google Scholar 

  89. R. Foot, M.J. Thomson and R. Volkas, Large neutrino asymmetries from neutrino oscillations, Phys. Rev. D 53 (1996) 5349 [hep-ph/9509327] [INSPIRE].

    ADS  Google Scholar 

  90. K. Abazajian, N.F. Bell, G.M. Fuller and Y.Y. Wong, Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos, Phys. Rev. D 72 (2005) 063004 [astro-ph/0410175] [INSPIRE].

    ADS  Google Scholar 

  91. R. Fardon, A.E. Nelson and N. Weiner, Dark energy from mass varying neutrinos, JCAP 10 (2004) 005 [astro-ph/0309800] [INSPIRE].

    Article  ADS  Google Scholar 

  92. D.B. Kaplan, A.E. Nelson and N. Weiner, Neutrino oscillations as a probe of dark energy, Phys. Rev. Lett. 93 (2004) 091801 [hep-ph/0401099] [INSPIRE].

    Article  ADS  Google Scholar 

  93. X.-J. Bi, P.-h. Gu, X.-l. Wang and X.-m. Zhang, Thermal leptogenesis in a model with mass varying neutrinos, Phys. Rev. D 69 (2004) 113007 [hep-ph/0311022] [INSPIRE].

    ADS  Google Scholar 

  94. R. Takahashi and M. Tanimoto, Model of mass varying neutrinos in SUSY, Phys. Lett. B 633 (2006) 675 [hep-ph/0507142] [INSPIRE].

    ADS  Google Scholar 

  95. R. Takahashi and M. Tanimoto, Speed of sound in the mass varying neutrinos scenario, JHEP 05 (2006) 021 [astro-ph/0601119] [INSPIRE].

    Article  ADS  Google Scholar 

  96. Z. Chacko, L.J. Hall, S.J. Oliver and M. Perelstein, Late time neutrino masses, the LSND experiment and the cosmic microwave background, Phys. Rev. Lett. 94 (2005) 111801 [hep-ph/0405067] [INSPIRE].

    Article  ADS  Google Scholar 

  97. NOMAD collaboration, P. Astier et al., Search for ν(μ) → ν(e) oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].

    ADS  Google Scholar 

  98. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].

    Article  ADS  Google Scholar 

  99. A. Kusenko, S. Pascoli and D. Semikoz, New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, JHEP 11 (2005) 028 [hep-ph/0405198] [INSPIRE].

    Article  ADS  Google Scholar 

  100. E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [INSPIRE].

    ADS  Google Scholar 

  101. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  102. L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z0 decays, Phys. Lett. B 295 (1992) 371 [INSPIRE].

    ADS  Google Scholar 

  103. G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett. 93 (2004) 081302 [astro-ph/0403323] [INSPIRE].

    Article  ADS  Google Scholar 

  104. S. Palomares-Ruiz, S. Pascoli and T. Schwetz, Explaining LSND by a decaying sterile neutrino, JHEP 09 (2005) 048 [hep-ph/0505216] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiJi Fan.

Additional information

ArXiv ePrint: 1201.6662

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Langacker, P. Light sterile neutrinos and short baseline neutrino oscillation anomalies. J. High Energ. Phys. 2012, 83 (2012). https://doi.org/10.1007/JHEP04(2012)083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)083

Keywords

Navigation