Skip to main content
Log in

Gravitational collapse of k-essence

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform numerical simulations of the gravitational collapse of a k-essence scalar field. When the field is sufficiently strongly gravitating, a black hole forms. However, the black hole has two horizons: a light horizon (the ordinary black hole horizon) and a sound horizon that traps k-essence. In certain cases the k-essence signals can travel faster than light and the sound horizon is inside the light horizon. Under those circumstances, k-essence signals can escape from the black hole. Eventually, the two horizons merge and the k-essence signals can no longer escape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [SPIRES].

    Article  ADS  Google Scholar 

  2. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [SPIRES].

    ADS  Google Scholar 

  3. C. Bonvin, C. Caprini and R. Durrer, A no-go theorem for k-essence dark energy, Phys. Rev. Lett. 97 (2006) 081303 [astro-ph/0606584] [SPIRES].

    Article  ADS  Google Scholar 

  4. J.U. Kang, V. Vanchurin and S. Winitzki, Attractor scenarios and superluminal signals in k-essence cosmology, Phys. Rev. D 76 (2007) 083511 [arXiv:0706.3994] [SPIRES].

    ADS  Google Scholar 

  5. E. Babichev, V. Mukhanov and A. Vikman, k-essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. V.F. Mukhanov and A. Vikman, Enhancing the tensor-to-scalar ratio in simple inflation, JCAP 02 (2006) 004 [astro-ph/0512066] [SPIRES].

    ADS  Google Scholar 

  7. E. Babichev, V.F. Mukhanov and A. Vikman, Escaping from the black hole?, JHEP 09 (2006) 061 [hep-th/0604075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Eling and T. Jacobson, Black holes in Einstein-Aether theory, Class. Quant. Grav. 23 (2006) 5643 [gr-qc/0604088] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. D. Garfinkle, C. Eling and T. Jacobson, Numerical simulations of gravitational collapse in Einstein-aether theory, Phys. Rev. D 76 (2007) 024003 [gr-qc/0703093] [SPIRES].

    ADS  Google Scholar 

  10. V. Moncrief, Stability of stationary, spherical accretion onto a Schwarzschild black hole, Astrophys J. 235 (1980) 1038.

    Article  ADS  Google Scholar 

  11. M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett. 70 (1993) 9 [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Ziprick and G. Kunstatter, Numerical study of black-hole formation in Painleve-Gullstrand coordinates, Phys. Rev. D 79 (2009) 101503 [arXiv:0812.0993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. R. Akhoury, D. Garfinkle, R. Saotome and A. Vikman, Non-stationary dark energy around a black hole, arXiv:1103.2454 [SPIRES].

  14. G. Kunstatter, C. Leonard, R. Mann and J. Ziprick, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Saotome.

Additional information

ArXiv ePrint: 1103.0290

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhoury, R., Garfinkle, D. & Saotome, R. Gravitational collapse of k-essence. J. High Energ. Phys. 2011, 96 (2011). https://doi.org/10.1007/JHEP04(2011)096

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)096

Keywords

Navigation