Skip to main content
Log in

A heterotic sigma model with novel target geometry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a (1, 2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half-twists of the heterotic sigma model leading to A and B type half-topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0, 2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1, 0) supersymmetry. These BRST operators combined in a certain way provide each half-topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Distler and B.R. Greene, A spects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Phases of N =2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Distler, Notes on (0, 2) superconformal field theories, hep-th/9502012 [SPIRES].

  4. E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Witten, Mirror manifolds and topological field theory, in Essays on mirror manifolds, S.T. Yau ed., International Press (1992), p. 120, hep-th/9112056 [SPIRES].

  6. K. Hori et al., Mirror symmetry, AMS, U.S.A. (2003), p. 929.

  7. E. Witten, Two-dimensional models with (0, 2) supersymmetry: perturbative aspects, hep-th/0504078 [SPIRES].

  8. F. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999) 439 [math/9803041].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V. Gorbounov, F. Malikov and V. Schechtman, Gerbes of chiral differential operator, Math. Res. Lett. 7 (2000) 55 [math.AG/9906117].

    MathSciNet  MATH  Google Scholar 

  10. A. Kapustin, Chiral de Rham complex and the half-twisted σ-model, hep-th/0504074 [SPIRES].

  11. M.-C. Tan, Two-dimensional twisted σ-models and the theory of chiral differential operators, Adv. Theor. Math. Phys. 10 (2006) 759 [hep-th/0604179] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  12. M.-C. Tan, The half-twisted orbifold σ-model and the chiral de Rham complex, Adv. Theor. Math. Phys. 12 (2008) 547 [hep-th/0607199] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  13. M.-C. Tan, Equivariant cohomology of the chiral de Rham complex and the half-twisted gauged σ-model, Adv. Theor. Math. Phys. 13 (2009) 897 [hep-th/0612164] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  14. M.-C. Tan, Two-dimensional twisted σ-models, the mirror chiral de Rham complex and twisted generalised mirror symmetry, JHEP 07 (2007) 013 [arXiv:0705.0790] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [SPIRES].

    MathSciNet  Google Scholar 

  16. E. Sharpe, Notes on correlation functions in (0, 2) theories, hep-th/0502064 [SPIRES].

  17. A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings, Adv. Theor. Math. Phys. 10 (2006) 657 [hep-th/0506263] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  18. J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris 264 A (1967) 245.

    MathSciNet  Google Scholar 

  19. K.C.H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, volume 213, Cambridge University Press, Cambridge U.K. (2005).

  20. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099]. = MATH/0209099;

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Gualtieri, Generalized complex geometry, math/0401221.

  22. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Kapustin and Y. Li, Topological σ-models with H-flux and twisted generalized complex manifolds, hep-th/0407249 [SPIRES].

  24. R. Zucchini, A topological σ-model of bi-Kähler geometry, JHEP 01 (2006) 041 [hep-th/0511144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Zucchini, Bi-Hermitian supersymmetric quantum mechanics, Class. Quant. Grav. 24 (2007) 2073 [hep-th/0611308] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. C.M. Hull and E. Witten, Supersymmetric σ-models and the heterotic string, Phys. Lett. B 160 (1985) 398 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. A. Kotov and T. Strobl, Generalizing geometry — Algebroids and σ-models, arXiv:1004.0632 [SPIRES].

  28. S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. 50 (1999) 417 [math/9610008].

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Laurent-Gengoux, M. Stienon and P. Xu, Holomorphic poisson structures and groupoids, Int. Math. Res. Not. 088 (2008) 46 [arXiv:0707.4253] [SPIRES].

    Google Scholar 

  30. U. Bruzzo and V. Rubtsov, Cohomology of skew-holomorphic Lie algebroids, arXiv:1003.1823 [SPIRES].

  31. M.C. Tan and J. Yagi, Chiral algebras of (0, 2) sigma models: beyond perturbation theory, Lett. Math. Phys. 84 (2008) 257 [arXiv:0801.4782] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M.C. Tan and J. Yagi, Chiral algebras of (0, 2) sigma models: beyond perturbation theory — II, Lett. Math. Phys. 84 (2008) 257 [arXiv:0805.1410] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Zucchini.

Additional information

ArXiv ePrint:1101.1389

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchini, R. A heterotic sigma model with novel target geometry. J. High Energ. Phys. 2011, 64 (2011). https://doi.org/10.1007/JHEP04(2011)064

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)064

Keywords

Navigation