Skip to main content
Log in

The QCD phase diagram at nonzero quark density

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the phase diagram of QCD on the μ − T plane for small to moderate chemical potentials. Two transition lines are defined with two quantities, the chiral condensate and the strange quark number susceptibility. The calculations are carried out on N t =6, 8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+ 1 flavor staggered fermion action using physical quark masses. After carrying out the continuum extrapolation we find that both quantities result in a similar curvature of the transition line. Furthermore, our results indicate that in leading order the width of the transition region remains essentially the same as the chemical potential is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHENIX collaboration, A. Adare et al., Detailed measurement of the e + e pair continuum in p + p and Au+Au collisions at \( \sqrt {{{s_{NN}}}} = 200 \) GeV and implications for direct photon production, Phys. Rev. C 81 (2010) 034911 [arXiv:0912.0244] [SPIRES].

    ADS  Google Scholar 

  2. Y. Aoki, G. Endrődi, Z. Fodor, S.D. Katz and K.K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].

    Article  ADS  Google Scholar 

  3. J.I. Kapusta and E.S. Bowman, Multiple Critical Points in the QCD Phase Diagram, PoS (CPOD 2009)018 [arXiv:0908.0726] [SPIRES].

  4. M. Cheng et al., The transition temperature in QCD, Phys. Rev. D 74 (2006) 054507 [hep-lat/0608013] [SPIRES].

    ADS  Google Scholar 

  5. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabó, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].

    ADS  Google Scholar 

  6. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [SPIRES].

    ADS  Google Scholar 

  8. Wuppertal -Budapest collaboration, S. Borsányi et al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXi v: 1005. 3508] [SPIRES].

    Article  ADS  Google Scholar 

  9. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [SPIRES].

    Article  ADS  Google Scholar 

  10. Z. Fodor and S.D. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534 (2002) 87 [hep-lat/0104001] [SPIRES].

    ADS  Google Scholar 

  11. Z. Fodor and S.D. Katz, Lattice determination of the critical point of QCD at finite T and mu, JHEP 03 (2002) 014 [hep-lat/0106002] [SPIRES].

    Article  ADS  Google Scholar 

  12. Z. Fodor, S.D. Katz and K.K. Szabo, The QCD equation of state at nonzero densities: Lattice result, Phys. Lett. B 568 (2003) 73 [hep-lat/0208078] [SPIRES].

    ADS  Google Scholar 

  13. F. Csikor et al., Equation of state at finite temperature and chemical potential, lattice QCD results, JHEP 05 (2004) 046 [hep-lat/0401016] [SPIRES].

    Article  ADS  Google Scholar 

  14. Z. Fodor and S.D. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP 04 (2004) 050 [hep-lat/0402006] [SPIRES].

    Article  ADS  Google Scholar 

  15. Z. Fodor, S.D. Katz and C. Schmidt, The density of states method at non-zero chemical potential, JHEP 03 (2007) 121 [hep-lat/0701022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [SPIRES].

    ADS  Google Scholar 

  17. C.R. Allton et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential, Phys. Rev. D 71 (2005) 054508 [hep-lat/0501030] [SPIRES].

    ADS  Google Scholar 

  18. R.V. Gavai and S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78 (2008) 114503 [arXiv:0806.2233] [SPIRES].

    ADS  Google Scholar 

  19. MILC collaboration, S. Basak et al., QCD equation of state at non-zero chemical potential, PoS(LATTICE 2008)171 [arXiv:0910.0276] [SPIRES].

  20. O. Kaczmarek et al., Phase boundary for the chiral transition in (2+ 1)-flavor QCD at small values of the chemical potential, Phys. Rev. D 83 (2011) 014504 [arXiv:1011.3130] [SPIRES].

    ADS  Google Scholar 

  21. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [SPIRES].

    Article  ADS  Google Scholar 

  22. M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [SPIRES].

    ADS  Google Scholar 

  23. L.-K. Wu, X.-Q. Luo and H.-S. Chen, Phase structure of lattice QCD with two flavors of Wilson quarks at finite temperature and chemical potential, Phys. Rev. D 76 (2007) 034505 [hep-lat/0611035] [SPIRES].

    ADS  Google Scholar 

  24. M. D’Elia, F. Di Renzo and M.P. Lombardo, The strongly interacting Quark Gluon Plasma and the critical behaviour of QCD at imaginary chemical potential, Phys. Rev. D 76 (2007) 114509 [arXiv:0705.3814] [SPIRES].

    ADS  Google Scholar 

  25. S. Conradi and M. D’Elia, Imaginary chemical potentials and the phase of the fermionic determinant, Phys. Rev. D 76 (2007) 074501 [arXiv:0707.1987] [SPIRES].

    ADS  Google Scholar 

  26. P. de Forcrand, S. Kim and O. Philipsen, A QCD chiral critical point at small chemical potential: is it there or not?, PoS(LATTICE 2007)178 [arXiv:0711.0262] [SPIRES].

  27. P. de Forcrand and O. Philipsen, The chiral critical point of N f =3 QCD at finite density to the order (μ/T)4, JHEP 11 (2008) 012 [arXiv:0808.1096] [SPIRES].

    Article  Google Scholar 

  28. M. D’Elia and F. Sanfilippo, Thermodynamics of two flavor QCD from imaginary chemical potentials, Phys. Rev. D 80 (2009) 014502 [arXiv:0904.1400] [SPIRES].

    ADS  Google Scholar 

  29. J.T. Moscicki, M. Wos, M. Lamanna, P. de Forcrand and O. Philipsen, Lattice QCD Thermodynamics on the Grid, Comput. Phys. Commun. 181 (2010) 1715 [arXiv:0911.5682] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  30. A. Alexandru, M. Faber, I. Horvath and K.-F. Liu, Lattice QCD at finite density via a new canonical approach, Phys. Rev. D 72 (2005) 114513 [hep-lat/0507020] [SPIRES].

    ADS  Google Scholar 

  31. S. Kratochvila and P. de Forcrand, The canonical approach to finite density QCD, PoS(LAT2005)167 [hep-lat/0509143] [SPIRES].

  32. S. Ejiri, Canonical partition function and finite density phase transition in lattice QCD, Phys. Rev. D 78 (2008) 074507 [arXiv:0804.3227] [SPIRES].

    ADS  Google Scholar 

  33. K.N. Anagnostopoulos and J. Nishimura, New approach to the complex-action problem and its application to a nonperturbative study of superstring theory, Phys. Rev. D 66 (2002) 106008 [hep-th/0108041] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. J. Ambjørn, K.N. Anagnostopoulos, J. Nishimura and J.J.M. Verbaarschot, The factorization method for systems with a complex action -a test in Random Matrix Theory for finite density QCD-, JHEP 10 (2002) 062 [hep-lat/0208025] [SPIRES].

    Article  ADS  Google Scholar 

  35. M.A. Clark and A.D. Kennedy, Accelerating Dynamical Fermion Computations using the Rational Hybrid Monte Carlo (RHMC) Algorithm with Multiple Pseudofermion Fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [SPIRES].

    Article  ADS  Google Scholar 

  36. Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabó, The equation of state in lattice QCD: With physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  37. G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [SPIRES].

    Article  ADS  Google Scholar 

  38. J. Cleymans and K. Redlich, Unified description of freeze-out parameters in relativistic heavy ion collisions, Phys. Rev. Lett. 81 (1998) 5284 [nucl-th/9808030] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Katz.

Additional information

ArXiv ePrint:1102.1356

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endrődi, G., Fodor, Z., Katz, S.D. et al. The QCD phase diagram at nonzero quark density. J. High Energ. Phys. 2011, 1 (2011). https://doi.org/10.1007/JHEP04(2011)001

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)001

Keywords

Navigation