Skip to main content
Log in

Generalized \( \mathcal{N} = 2 \) super Landau models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We generalize previous results for the superplane Landau model to exhibit an explicit worldline \( \mathcal{N} = 2 \) supersymmetry for an arbitrary magnetic field on any two-dimensional manifold. Starting from an off-shell \( \mathcal{N} = 2 \) superfield formalism, we discuss the quantization procedure in the general case characterized by two independent potentials on the manifold and show that the relevant Hamiltonians are factorizable. In the restricted case, when both the Gauss curvature and the magnetic field are constant over the manifold and, as a consequence, the underlying potentials are related, the Hamiltonians admit infinite series of factorization chains implying the integrability of the associated systems. We explicitly determine the spectrum and eigenvectors for the particular model with \( \mathbb{C}{\mathbb{P}^1} \) as the bosonic manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Landau, Diamagnetismus der Metalle, Z. Phys. 64 (1930) 629.

    Article  ADS  Google Scholar 

  2. E. Ivanov, L. Mezincescu and P.K. Townsend, Planar super-Landau models, JHEP 01 (2006) 143 [hep-th/0510019] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Curtright, E. Ivanov, L. Mezincescu and P.K. Townsend, Planar Super-Landau Models Revisited, JHEP 04 (2007) 020 [hep-th/0612300] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.V. Volkov and A.I. Pashnev, Supersymmetric Lagrangian for particles in proper time, Theor. Math. Phys. 44 (1980) 770 [SPIRES].

    Article  MathSciNet  Google Scholar 

  5. K. Hasebe, Supersymmetric extension of noncommutative spaces, Berry phases and quantum Hall effects, Phys. Rev. D 72 (2005) 105017 [hep-th/0503162] [SPIRES].

    ADS  Google Scholar 

  6. A. Beylin, T.L. Curtright, E. Ivanov, L. Mezincescu and P.K. Townsend, Unitary Spherical Super-Landau Models, JHEP 10 (2008) 069 [arXiv:0806.4716] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Ivanov, Supersymmetrizing Landau Models, Theor. Math. Phys. 154 (2008) 349 [arXiv:0705.2249] [SPIRES].

    Article  MATH  Google Scholar 

  8. C.M. Bender, Introduction to PT-Symmetric Quantum Theory, Contemp. Phys. 46 (2005) 277 [quant-ph/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947 [hep-th/0703096] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Curtright and L. Mezincescu, Biorthogonal Quantum Systems, J. Math. Phys. 48 (2007) 092106 [quant-ph/0507015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Curtright, L. Mezincescu and D. Schuster, Supersymmetric Biorthogonal Quantum Systems, J. Math. Phys. 48 (2007) 092108 [quant-ph/0603170] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. E.V. Ferapontov and A.P. Veselov, Integrable Schroedinger operators with magnetic fields: Factorisation method on curved surfaces, J. Math. Phys. 42 (2001) 590 [math-ph/0007034] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. A.V. Smilga, How to quantize supersymmetric theories, Nucl. Phys. B 292 (1987) 363 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. B.A. Dubrovin, S.P. Novikov and A.T. Fomenko, Modern Geometry, Springer- Verlag (1995).

  15. F.D.M. Haldane, Fractional quantization of the Hall effect: A Hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51 (1983) 605 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. D’Hoker and L. Vinet, Supersymmetry of the Pauli equation in the presence of a magnetic monopole, Phys. Lett. B 137 (1984) 72 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. V.P. Akulov and A.I. Pashnev, Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level, Theor. Math. Phys. 65 (1985) 1027 [Teor. Mat. Fiz. 65 (1985) 84] [SPIRES].

    Article  MathSciNet  Google Scholar 

  18. F. De Jonghe, A.J. Macfarlane, K. Peeters and J.W. van Holten, New supersymmetry of the monopole, Phys. Lett. B 359 (1995) 114 [hep-th/9507046] [SPIRES].

    ADS  Google Scholar 

  19. M.S. Plyushchay, Monopole Chern-Simons term: Charge-monopole system as a particle with spin, Nucl. Phys. B 589 (2000) 413 [hep-th/0004032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. G.A. Mezincescu and L. Mezincescu, Factorization method and the supersymmetric monopole harmonics, J. Math. Phys. 44 (2003) 3595 [hep-th/0109002] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. Kim and C.-k. Lee, Supersymmetry-based Approach to Quantum Particle Dynamics, Annals Phys. 296 (2002) 390 [hep-th/0112120] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  22. S.-T. Hong, J. Lee, T.H. Lee and P. Oh, Supersymmetric Monopole Quantum Mechanics on Sphere, Phys. Rev. D 72 (2005) 015002 [hep-th/0505018] [SPIRES].

    ADS  Google Scholar 

  23. S.-T. Hong, J. Lee, T.H. Lee and P. Oh, A complete solution of a constrained system: SUSY monopole quantum mechanics, JHEP 02 (2006) 036 [hep-th/0511275] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. H. Elvang and J. Polchinski, The quantum Hall effect on R 4, hep-th/0209104 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mezincescu.

Additional information

ArXiv ePrint: 1003.0218v1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beylin, A., Curtright, T., Ivanov, E. et al. Generalized \( \mathcal{N} = 2 \) super Landau models. J. High Energ. Phys. 2010, 91 (2010). https://doi.org/10.1007/JHEP04(2010)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)091

Keywords

Navigation