Skip to main content
Log in

Universal mechanism of (semi-classical) deconfinement and θ-dependence for all simple groups

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using the twisted partition function on \( {{\mathbb{R}}^3} \) × \( {{\mathbb{S}}^1} \), we argue that the deconfinement phase transition in pure Yang-Mills theory for all simple gauge groups is continuously connected to a quantum phase transition that can be studied in a controlled way. We explicitly consider two classes of theories, gauge theories with a center symmetry, such as SU(N c ) gauge theory for arbitrary N c , and theories without a center symmetry, such as G 2 gauge theory. The mechanism governing the phase transition is universal and valid for all simple groups. The perturbative one-loop potential as well as monopole-instantons generate attraction among the eigenvalues of the Wilson line. This is counter-acted by neutral bions — topological excitations which generate eigenvalue repulsion for all simple groups. The transition is driven by the competition between these three effects. We study the transition in more detail for the gauge groups SU(N c ), N c ≥ 3, and G 2. In the case of G 2 there is no change of symmetry, but the expectation value of the Wilson line exhibits a discontinuity. We also examine the effect of the θ-angle on the phase transition and critical temperature T c (θ). The critical temperature is a multi-branched function, which has a minimum at θ = π as a result of topological interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Poppitz, T. Schäfer and M. Ünsal, Continuity, deconfinement and (super) Yang-Mills theory, JHEP 10 (2012) 115 [arXiv:1205.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  5. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Ünsal and L.G. Yaffe, Large-N volume independence in conformal and confining gauge theories, JHEP 08 (2010) 030 [arXiv:1006.2101] [INSPIRE].

    Article  Google Scholar 

  8. K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. T.C. Kraan and P. van Baal, Monopole constituents inside SU(N ) calorons, Phys. Lett. B 435 (1998)389 [hep-th/9806034] [INSPIRE].

    ADS  Google Scholar 

  10. T.M. Nye and M.A. Singer, An L 2 index theorem for Dirac operators on S 1 × R 3, J. Funct. Anal. (2000) [math/0009144] [INSPIRE].

  11. E. Poppitz and M. Ünsal, Index theorem for topological excitations on R 3 × S 1 and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

    ADS  Google Scholar 

  13. M.M. Anber and E. Poppitz, Microscopic structure of magnetic bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P.C. Argyres and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Lucini, M. Teper and U. Wenger, Properties of the deconfining phase transition in SU(N ) gauge theories, JHEP 02 (2005) 033 [hep-lat/0502003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103 (2009)232001 [arXiv:0907.3719] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Mykkanen, M. Panero and K. Rummukainen, Casimir scaling and renormalization of Polyakov loops in large-N gauge theories, JHEP 05 (2012) 069 [arXiv:1202.2762] [INSPIRE].

    ADS  Google Scholar 

  18. B. Lucini and M. Panero, SU(N ) gauge theories at large-N , arXiv:1210.4997 [INSPIRE].

  19. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  20. E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

    ADS  Google Scholar 

  22. B. Bringoltz and M. Teper, In search of a Hagedorn transition in SU(N ) lattice gauge theories at large-N , Phys. Rev. D 73 (2006) 014517 [hep-lat/0508021] [INSPIRE].

    ADS  Google Scholar 

  23. N. Cabibbo and G. Parisi, Exponential hadronic spectrum and quark liberation, Phys. Lett. B 59 (1975)67 [INSPIRE].

    ADS  Google Scholar 

  24. C.B. Thorn, Infinite N c QCD at finite temperature: is there an ultimate temperature?, Phys. Lett. B 99 (1981) 458 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. T.D. Cohen, QCD strings and the thermodynamics of the metastable phase of QCD at large-N c, Phys. Lett. B 637 (2006) 81 [hep-th/0602037] [INSPIRE].

    ADS  Google Scholar 

  26. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, A first order deconfinement transition in large-N Yang-Mills theory on a small S 3, Phys. Rev. D 71 (2005)125018 [hep-th/0502149] [INSPIRE].

    ADS  Google Scholar 

  28. J.C. Myers and M.C. Ogilvie, New phases of SU(3) and SU(4) at finite temperature, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869] [INSPIRE].

    ADS  Google Scholar 

  29. M.C. Ogilvie, Phases of gauge theories, J. Phys. A 45 (2012) 483001 [arXiv:1211.2843] [INSPIRE].

    Google Scholar 

  30. M. D’Elia and F. Negro, θ dependence of the deconfinement temperature in Yang-Mills theories, Phys. Rev. Lett. 109 (2012) 072001 [arXiv:1205.0538] [INSPIRE].

    Article  ADS  Google Scholar 

  31. E. Vicari and H. Panagopoulos, Theta dependence of SU(N ) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].

    Article  ADS  Google Scholar 

  32. E. Thomas and A. R. Zhitnitsky, Topological susceptibility and contact term in QCD. A toy model, Phys. Rev. D 85 (2012) 044039 [arXiv:1109.2608] [INSPIRE].

    ADS  Google Scholar 

  33. M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012)105012 [arXiv:1201.6426] [INSPIRE].

    ADS  Google Scholar 

  34. M.M. Anber, Theta dependence of the deconfining phase transition in pure SU(N c) Yang-Mills theories, arXiv:1302.2641 [INSPIRE].

  35. K. Holland, P. Minkowski, M. Pepe and U. Wiese, Exceptional confinement in G 2 gauge theory, Nucl. Phys. B 668 (2003) 207 [hep-lat/0302023] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Pepe and U.-J. Wiese, Exceptional deconfinement in G 2 gauge theory, Nucl. Phys. B 768 (2007)21 [hep-lat/0610076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Greensite, K. Langfeld, Š. Olejník, H. Reinhardt and T. Tok, Color screening, casimir scaling and domain structure in G 2 and SU(N ) gauge theories, Phys. Rev. D 75 (2007) 034501 [hep-lat/0609050] [INSPIRE].

    ADS  Google Scholar 

  38. G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini and C. Pica, G 2 gauge theory at finite temperature, JHEP 10 (2007) 100 [arXiv:0709.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Diakonov and V. Petrov, Confinement and deconfinement for any gauge group from dyons viewpoint, AIP Conf. Proc. 1343 (2011) 69 [arXiv:1011.5636] [INSPIRE].

    Article  ADS  Google Scholar 

  40. E.-M. Ilgenfritz and A. Maas, Topological aspects of G 2 Yang-Mills theory, Phys. Rev. D 86 (2012)114508 [arXiv:1210.5963] [INSPIRE].

    ADS  Google Scholar 

  41. A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes and R.D. Pisarski, Effective matrix model for deconfinement in pure gauge theories, Phys. Rev. D 86 (2012) 105017 [arXiv:1205.0137] [INSPIRE].

    ADS  Google Scholar 

  42. E. Shuryak and T. Sulejmanpasic, The chiral symmetry breaking/restoration in dyonic vacuum, Phys. Rev. D 86 (2012) 036001 [arXiv:1201.5624] [INSPIRE].

    ADS  Google Scholar 

  43. B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions, Nucl. Phys. B 210 (1982) 423 [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Diakonov, C. Gattringer and H.-P. Schadler, Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory, JHEP 08 (2012) 128 [arXiv:1205.4768] [INSPIRE].

    Article  ADS  Google Scholar 

  45. P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].

    Article  ADS  Google Scholar 

  46. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008)074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Poppitz.

Additional information

ArXiv ePrint: 1212.1238

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poppitz, E., Schäfer, T. & Ünsal, M. Universal mechanism of (semi-classical) deconfinement and θ-dependence for all simple groups. J. High Energ. Phys. 2013, 87 (2013). https://doi.org/10.1007/JHEP03(2013)087

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)087

Keywords

Navigation