Skip to main content
Log in

Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with Hawk

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The associate production of Higgs bosons with W or Z bosons, known as Higgs-strahlung, is an important search channel for Higgs bosons at the hadron colliders Tevatron and LHC for low Higgs-boson masses. We refine a previous calculation of next-to-leading-order electroweak corrections (and recalculate the QCD corrections) upon including the leptonic decay of the W/Z bosons, thereby keeping the fully differential information of the 2-lepton + Higgs final state. The gauge invariance of the W/Z-resonance treatment is ensured by the use of the complex-mass scheme. The electroweak corrections, which are at the level of − (5−10)% for total cross sections, further increase in size with increasing transverse momenta p T in differential cross sections. For instance, for p T,H \( {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{ > }} \) 200 GeV, which is the interesting range at the LHC, the electroweak corrections to WH production reach about −14% for M H = 120 GeV. The described corrections are implemented in the Hawk Monte Carlo program, which was initially designed for the vector-boson-fusion channel, and are discussed for various distributions in the production channels \( {\text{pp}}/{\text{p}}\overline {\text{p}} \to {\text{H}} + l{{v}_{l}}{{l}^{ - }}{{l}^{ + }}/ + X \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb 1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  2. CMS collaboration, Combination of SM Higgs Searches, CMS-PAS-HIG-11-032 (2011).

  3. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  4. ATLAS collaboration, J.M. Butterworth et al., ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATL-PHYS-PUB-2009-088 (2009).

  5. T. Han and S. Willenbrock, QCD correction to the ppW H and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

    ADS  Google Scholar 

  6. H. Baer, B. Bailey and J. Owens, Os) Monte Carlo approach to W + Higgs associated production at hadron supercolliders, Phys. Rev. D 47 (1993) 2730 [INSPIRE].

    ADS  Google Scholar 

  7. J. Ohnemus and W. Stirling, Order αs corrections to the differential cross-section for the WH intermediate mass Higgs signal, Phys. Rev. D 47 (1993) 2722 [INSPIRE].

    ADS  Google Scholar 

  8. M. Spira, V2HV, http://people.web.psi.ch/spira/v2hv (2007).

  9. J. Campbell and K. Ellis, MCFM - Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov (2010).

  10. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

    ADS  Google Scholar 

  11. R. Hamberg, W. van Neerven and T. Matsuura, A complete calculation of the order \( \alpha_s^{{2}} \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002)403-404] [INSPIRE].

    Article  ADS  Google Scholar 

  12. O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-Strahlung, arXiv:1111.0761 [INSPIRE].

  13. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  14. O. Brein et al., Precision calculations for associated WH and ZH production at hadron colliders, hep-ph/0402003 [INSPIRE].

  15. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  16. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e  → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504-507] [hep-ph/0505042] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Ciccolini, A. Denner and S. Dittmaier, Strong and electroweak corrections to the production of Higgs + 2jets via weak interactions at the LHC, Phys. Rev. Lett. 99 (2007) 161803 [arXiv:0707.0381] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].

    ADS  Google Scholar 

  21. A. Denner, S. Dittmaier, S. Kallweit and A. Mück, Hawk, http://omnibus.uni-freiburg.de/∼sd565/programs/hawk/hawk.html (2010).

  22. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

    ADS  Google Scholar 

  26. E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Dittmaier and M. Roth, LUSIFER: a LUcid approach to six FERmion production, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070] [INSPIRE].

    Article  Google Scholar 

  28. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay HW W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  29. A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HW W/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys. B 440 (1995) 95 [hep-ph/9410338] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Küblbeck, M. Böhm and A. Denner, Feyn Arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Eck, J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, Würzburg Germany (1992).

  34. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H. Spiesberger, QED radiative corrections for parton distributions, Phys. Rev. D 52 (1995) 4936 [hep-ph/9412286] [INSPIRE].

    ADS  Google Scholar 

  43. M. Roth and S. Weinzierl, QED corrections to the evolution of parton distributions, Phys. Lett. B 590 (2004) 190 [hep-ph/0403200] [INSPIRE].

    ADS  Google Scholar 

  44. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  47. D. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    ADS  Google Scholar 

  48. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in proceedings of HERA and the LHC Workshop, CERN, Geneva Switzerland (2005), A. de Roeck and H. Jung eds., CERN-2005-014 [hep-ph/0508110] [INSPIRE].

  50. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  51. J. Olson and G. Piacquadio, private communication within the WH/ZH subgroup of the LHC Higgs Cross section Working Group collaboration.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kallweit.

Additional information

ArXiv ePrint: 1112.5142

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denner, A., Dittmaier, S., Kallweit, S. et al. Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with Hawk. J. High Energ. Phys. 2012, 75 (2012). https://doi.org/10.1007/JHEP03(2012)075

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)075

Keywords

Navigation