Skip to main content
Log in

Probing higher spin black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the propagation of scalar fields on various backgrounds in three dimensional higher spin gravity. Our main emphasis is on obtaining the bulk-boundary propagator, which can be efficiently computed using group theory and higher spin gauge symmetry and from which we can extract scalar two-point functions in the dual CFT. As an illustration, we obtain a simple closed form expression for the propagator in a particular spin-3 deformation of AdS3. In the case of higher spin black holes, we prove on general grounds that the propagator respects an imaginary time periodicity consistent with the thermal nature of the black hole; in doing so we make progress in understanding the group exponentiation of the higher spin Lie algebra hs[λ], and its center. We also explicitly compute the propagator in the black hole background at first order in the higher spin charge. Evaluated on the Lorentzian section, the result is consistent with an interpretation in which the black hole has two causally disconnected boundary components, as is the case for the BTZ black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  4. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, arXiv:1207.6697 [INSPIRE].

  5. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. H.-S. Tan, Aspects of three-dimensional spin-4 gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, arXiv:1207.2844 [INSPIRE].

  12. H. Tan, Exploring three-dimensional higher-spin supergravity based on sl(N |N − 1) Chern-Simons theories, JHEP 11 (2012) 063 [arXiv:1208.2277] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Datta and J.R. David, Supersymmetry of classical solutions in Chern-Simons higher spin supergravity, JHEP 01 (2013) 146 [arXiv:1208.3921] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, arXiv:1208.5182 [INSPIRE].

  15. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Sezgin and P. Sundell, An exact solution of 4D higher-spin gauge theory, Nucl. Phys. B 762 (2007) 1 [hep-th/0508158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Iazeolla, E. Sezgin and P. Sundell, Real forms of complex higher spin field equations and new exact solutions, Nucl. Phys. B 791 (2008) 231 [arXiv:0706.2983] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. V. Didenko and M. Vasiliev, Static BPS black hole in 4D higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [arXiv:0906.3898] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Iazeolla and P. Sundell, Families of exact solutions to Vasilievs 4D equations with spherical, cylindrical and biaxial symmetry, JHEP 12 (2011) 084 [arXiv:1107.1217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Iazeolla and P. Sundell, Biaxially symmetric solutions to 4D higher-spin gravity, arXiv:1208.4077 [INSPIRE].

  21. M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Bergshoeff, M. Blencowe and K. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  29. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. C. Pope, L. Romans and X. Shen, W and the Racah-Wigner algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. I. Bakas and E. Kiritsis, Bosonic realization of a universal W algebra and Z parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. N. Mukunda, E. Sudarshan, J. Sharma and C. Mehta, Representations and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates, J. Math. Phys. 21 (1980) 2386 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. C. Mehta, N. Mukunda, J. Sharma and G. Sudarshan, Representations and properties of para-Bose oscillator operators. II. Coherent states and the minimum uncertainty states, J. Math. Phys. 22 (1981) 78 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Agarwal and E. Wolf, Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators, Phys. Rev. D 2 (1970) 2161 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Perlmutter.

Additional information

ArXiv ePrint: 1209.4937

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, P., Perlmutter, E. Probing higher spin black holes. J. High Energ. Phys. 2013, 96 (2013). https://doi.org/10.1007/JHEP02(2013)096

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)096

Keywords

Navigation