Skip to main content
Log in

Inverse scattering and the Geroch group

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the integrability of gravity-matter systems in D = 2 spatial dimensions with matter related to a symmetric space G/K using the well-known linear systems of Belinski-Zakharov (BZ) and Breitenlohner-Maison (BM). The linear system of BM makes the group structure of the Geroch group manifest and we analyse the relation of this group structure to the inverse scattering method of the BZ approach in general. Concrete solution generating methods are exhibited in the BM approach in the so-called soliton transformation sector where the analysis becomes purely algebraic. As a novel example we construct the Kerr-NUT solution by solving the appropriate purely algebraic Riemann-Hilbert problem in the BM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2003).

    Google Scholar 

  2. V. Belinsky and V. Zakharov, Integration of the Einstein equations by the inverse scattering problem technique and the calculation of the exact soliton solutions, Sov. Phys. JETP 48 (1978)985 [Zh. Eksp. Teor. Fiz. 75 (1978) 1953] [INSPIRE].

    ADS  Google Scholar 

  3. V. Belinsky and V. Sakharov, Stationary gravitational solitons with axial symmetry, Sov. Phys. JETP 50 (1979) 1 [Zh. Eksp. Teor. Fiz. 77 (1979) 3] [INSPIRE].

    ADS  Google Scholar 

  4. P. Breitenlohner and D. Maison, On the Geroch group, Annales Poincaré Phys. Theor. 46 (1987)215 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. V. Belinski and E. Verdaguer, Gravitational solitons, Cambridge University Press, Cambridge U.K. (2001).

    Book  MATH  Google Scholar 

  6. C. Cosgrove, Relationships between the group theoretic and soliton theoretic techniques for generating stationary axisymmetric gravitational solutions, J. Math. Phys. 21 (1980) 2417 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Cosgrove, Relationship between the inverse scattering techniques of Belinski-Zakharov and Hauser-Ernst in general relativity, J. Math. Phys. 23 (1982) 615.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R.P. Geroch, A method for generating solutions of Einsteins equations, J. Math. Phys. 12 (1971) 918 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R.P. Geroch, A method for generating solutions of Einsteins equations, J. Math. Phys. 12 (1971) 918 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. B. Julia, Infinite Lie algebras in physics, in Proceedings of Unified Field Theories and Beyond, Baltimore U.S.A. (1981), pg. 23 [INSPIRE].

  11. B. Julia, Group disintegrations, Conf. Proc. C 8006162 (1980) 331 [INSPIRE].

    Google Scholar 

  12. W. Kinnersley, Symmetries of the stationary Einstein-Maxwell field equations. 1, J. Math. Phys. 18 (1977) 1529 [INSPIRE].

    Article  ADS  Google Scholar 

  13. W. Kinnersley and D. Chitre, Symmetries of the stationary Einstein-Maxwell field equations. 2, J. Math. Phys. 18 (1977) 1538 [INSPIRE].

    Article  ADS  Google Scholar 

  14. W. Kinnersley and D. Chitre, Symmetries of the stationary Einstein-Maxwell field equations. 3, J. Math. Phys. 19 (1978) 1926 [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Julia, Gravity, supergravities and integrable systems, in Proceedings of Group theoretical methods in physics, Istanbul Turkey (1982), pg. 214 and Paris Ec. Norm. Sup. LPTENS-82-23, Paris France (1982) [INSPIRE].

  16. C. Devchand and D. Fairlie, A generating function for hidden symmetries of chiral models, Nucl. Phys. B 194 (1982) 232 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Devchand and J. Schiff, Hidden symmetries of the principal chiral model unveiled, Commun. Math. Phys. 190 (1998) 675 [hep-th/9611081] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. H. Nicolai, The integrability of N = 16 supergravity, Phys. Lett. B 194 (1987) 402 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J.H. Schwarz, Classical symmetries of some two-dimensional models coupled to gravity, Nucl. Phys. B 454 (1995) 427 [hep-th/9506076] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Bernard and B. Julia, Twisted selfduality of dimensionally reduced gravity and vertex operators, Nucl. Phys. B 547 (1999) 427 [hep-th/9712254] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Lü, M. Perry and C. Pope, Infinite-dimensional symmetries of two-dimensional coset models coupled to gravity, Nucl. Phys. B 806 (2009) 656 [arXiv:0712.0615] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Kramer and G. Neugebauer, Zu axialsymmetrischen Lösungen der Einsteinschen Feldgleichungen für das Vakuum (in German), Commun. Math. Phys. 10 (1968) 132.

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Sen, Duality symmetry group of two-dimensional heterotic string theory, Nucl. Phys. B 447 (1995) 62 [hep-th/9503057] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Hauser and F.J. Ernst, Proof of a Geroch conjecture, J. Math. Phys. 22 (1981) 1051.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P. Breitenlohner and D. Maison, Solitons in Kaluza-Klein theory, unpublished notes, June 1986.

  27. H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as thermally excited supertubes, JHEP 02 (2005) 031 [hep-th/0412130] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Feldman and A.A. Pomeransky, Charged black rings in supergravity with a single non-zero gauge field, JHEP 07 (2012) 141 [arXiv:1206.1026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Compere, S. de Buyl, S. Stotyn and A. Virmani, A general black string and its microscopics, JHEP 11 (2010) 133 [arXiv:1006.5464] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Tomizawa and S. Mizoguchi, General Kaluza-Klein black holes with all six independent charges in five-dimensional minimal supergravity, Phys. Rev. D 87 (2013) 024027 [arXiv:1210.6723] [INSPIRE].

    ADS  Google Scholar 

  31. V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (running) bolt for new reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. B. Julia and H. Nicolai, Conformal internal symmetry of 2D σ-models coupled to gravity and a dilaton, Nucl. Phys. B 482 (1996) 431 [hep-th/9608082] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Maison, Duality and hidden symmetries in gravitational theories, Lect. Notes Phys. 540 (2000)273 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. H. Nicolai and A. Nagar, Infinite-dimensional symmetries in gravity, in Gravitational waves, I. Ciufolini et al. eds., IOP, Bristol U.K. (2001), pg. 243.

  37. A.W. Knapp, Lie groups beyond an introduction, Birkhäuser, Boston U.S.A. (1996).

    Book  MATH  Google Scholar 

  38. B.-Y. Hou and W. Lee, Virasoro algebra in the solution space of the Ernst equation, Lett. Math. Phys. 13 (1987) 1 [Erratum ibid. 14 (1987) 383] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. D. Maison, Geroch group and inverse scattering method, MPI-PAE/PTh-80/88, (1988)[INSPIRE].

  40. S. Beheshti and A.S. Tahvildar-Zadeh, Integrability and vesture for harmonic maps into symmetric spaces, arXiv:1209.1383 [INSPIRE].

  41. A.A. Pomeransky, Complete integrability of higher-dimensional Einstein equations with additional symmetry and rotating black holes, Phys. Rev. D 73 (2006) 044004 [hep-th/0507250] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. H. Nicolai, Two-dimensional gravities and supergravities as integrable system, in Proceedings of Recent aspects of quantum fields, Schladming Austria (1991), pg. 231 and DESY report DESY-91-038, Hamburg Germany (1991) [INSPIRE].

  43. R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].

    Google Scholar 

  44. T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. S. Hollands, Black hole uniqueness theorems and new thermodynamic identities in eleven dimensional supergravity, Class. Quant. Grav. 29 (2012) 205009 [arXiv:1204.3421] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. P.C. West, E 11 and M -theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. T. Damour, M. Henneaux and H. Nicolai, E 10 and asmall tension expansionof M -theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Kleinschmidt and H. Nicolai, Gradient representations and affine structures in AE n, Class. Quant. Grav. 22 (2005) 4457 [hep-th/0506238] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despoina Katsimpouri.

Additional information

ArXiv ePrint: 1211.3044

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsimpouri, D., Kleinschmidt, A. & Virmani, A. Inverse scattering and the Geroch group. J. High Energ. Phys. 2013, 11 (2013). https://doi.org/10.1007/JHEP02(2013)011

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)011

Keywords

Navigation