Skip to main content
Log in

Quark masses and mixings in the RS1 model with a condensing 4th generation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the hierarchy of quark masses and mixings in a model based on a 5-dimensional spacetime with constant curvature of Randall-Sundrum type with two branes, where the Electroweak Symmetry Breaking is caused dynamically by the condensation of a 4th generation of quarks, due to underlying physics from the 5D bulk and the first KK gluons. We first study the hierarchy of quark masses and mixings that can be obtained from purely adjusting the profile localizations, finding that realistic masses are not reproduced unless non trivial hierarchies of underlying 4-fermion interactions from the bulk are included. Then we study global U(1) symmetries that can be imposed in order to obtain non-symmetric modified Fritzsch-like textures in the mass matrices that reproduce reasonably well quark masses and CKM mixings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  2. H. Fritzsch, Calculating the Cabibbo Angle, Phys. Lett. B 70 (1977) 436 [INSPIRE].

    ADS  Google Scholar 

  3. H. Fritzsch, Weak Interaction Mixing in the Six - Quark Theory, Phys. Lett. B 73 (1978) 317 [INSPIRE].

    ADS  Google Scholar 

  4. H. Fritzsch, Quark Masses and Flavor Mixing, Nucl. Phys. B 155 (1979) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H. Fritzsch and J. Plankl, Flavor Democracy and the Lepton - Quark Hierarchy, Phys. Lett. B 237 (1990) 451 [INSPIRE].

    ADS  Google Scholar 

  6. D.-s. Du and Z.-z. Xing, A Modified Fritzsch ansatz with additional first order perturbation, Phys. Rev. D 48 (1993) 2349 [INSPIRE].

    ADS  Google Scholar 

  7. H. Fritzsch and Z.-z. Xing, Four zero texture of Hermitian quark mass matrices and current experimental tests, Phys. Lett. B 555 (2003) 63 [hep-ph/0212195] [INSPIRE].

    ADS  Google Scholar 

  8. H. Fritzsch and Z.-z. Xing, Mass and flavor mixing schemes of quarks and leptons, Prog. Part. Nucl. Phys. 45 (2000) 1 [hep-ph/9912358] [INSPIRE].

    Article  ADS  Google Scholar 

  9. H. Fritzsch and Z.-z. Xing, The Light quark sector, CP-violation and the unitarity triangle, Nucl. Phys. B 556 (1999) 49 [hep-ph/9904286] [INSPIRE].

    Article  ADS  Google Scholar 

  10. H. Fritzsch and Z.-z. Xing, A Symmetry pattern of maximal CP-violation and a determination of the unitarity triangle, Phys. Lett. B 353 (1995) 114 [hep-ph/9502297] [INSPIRE].

    ADS  Google Scholar 

  11. Z.-z. Xing, D. Yang and S. Zhou, Broken S 3 Flavor Symmetry of Leptons and Quarks: Mass Spectra and Flavor Mixing Patterns, Phys. Lett. B 690 (2010) 304 [arXiv:1004.4234] [INSPIRE].

    ADS  Google Scholar 

  12. A. Machado, J. Montero and V. Pleitez, On Quark masses and mixing in a model model with A 4 symmetry, arXiv:1108.1767 [INSPIRE].

  13. J.E. Kim and M.-S. Seo, Quark and lepton mixing angles with a dodeca-symmetry, JHEP 02 (2011) 097 [arXiv:1005.4684] [INSPIRE].

    Article  ADS  Google Scholar 

  14. H. Nishiura, K. Matsuda, T. Kikuchi and T. Fukuyama, Phenomenological analysis of lepton and quark mass matrices, Phys. Rev. D 65 (2002) 097301 [hep-ph/0202189] [INSPIRE].

    ADS  Google Scholar 

  15. K. Matsuda and H. Nishiura, Assignments of universal texture components for quark and lepton mass matrices, Phys. Rev. D 69 (2004) 053005 [hep-ph/0309272] [INSPIRE].

    ADS  Google Scholar 

  16. G. Branco, D. Emmanuel-Costa and R. Gonzalez Felipe, Texture zeros and weak basis transformations, Phys. Lett. B 477 (2000) 147 [hep-ph/9911418] [INSPIRE].

    ADS  Google Scholar 

  17. G. Branco, M. Rebelo and J. Silva-Marcos, Nonfactorizable phases, Yukawa textures and the size of sin 2 beta, Phys. Lett. B 597 (2004) 155 [hep-ph/0403016] [INSPIRE].

    ADS  Google Scholar 

  18. G.C. Branco, L. Lavoura and J.P. Silva, CP violation, International series of monographs on physics 103, Clarendon Press (1999).

  19. Y.-F. Zhou, Texture of Yukawa coupling matrices in general two-Higgs doublet model, Journal of Physics G Nuclear Physics 30 (2004) 783 [arXiv:hep-ph/0307240].

    Article  ADS  Google Scholar 

  20. A. Cárcamo, R. Martinez and J.-A. Rodríguez, Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type-III, European Physical Journal C 50 (2007) 935 [arXiv:hep-ph/0606190].

    ADS  Google Scholar 

  21. A. Carcamo Hernandez, R. Martinez and J.A. Rodriguez, Textures of Yukawa coupling matrices in the 2HDM type-III, AIP Conf. Proc. 1026 (2008) 272 [INSPIRE].

    Article  ADS  Google Scholar 

  22. K.S. Babu and R.N. Mohapatra, Mass Matrix Textures from Superstring Inspired SO(10) Models, Physical Review Letters 74 (1995) 2418 [arXiv:hep-ph/9410326].

    Article  ADS  Google Scholar 

  23. R. Barbieri, G. Dvali, A. Strumia, Z. Berezhiani and L. Hall, Flavour in supersymmetric Grand Unification: A democratic approach, Nuclear Physics B 432 (1994) 49 [arXiv:hep-ph/9405428].

    ADS  Google Scholar 

  24. Z. Berezhiani, SUSY SU(6): GIFT for doublet-triplet splitting and fermion masses, Physics Letters B 355 (1995) 481 [arXiv:hep-ph/9503366].

    ADS  Google Scholar 

  25. H.-C. Cheng, Doublet-triplet splitting and fermion masses with extra dimensions, Phys. Rev. D 60 (1999), no. 7 075015 [arXiv:hep-ph/9904252].

    ADS  Google Scholar 

  26. A. Carcamo Hernandez and R. Rahman, Pseudo-Goldstone Higgs Doublets from Non-Vectorlike Grand Unified Higgs Sector, arXiv:1007.0447 [INSPIRE].

  27. Y. Bai, M. Carena and E. Ponton, The Planck Scale from Top Condensation, Phys. Rev. D 81 (2010) 065004 [arXiv:0809.1658] [INSPIRE].

    ADS  Google Scholar 

  28. N. Rius and V. Sanz, Dynamical symmetry breaking in warped compactifications, Phys. Rev. D 64 (2001) 075006 [hep-ph/0103086] [INSPIRE].

    ADS  Google Scholar 

  29. B.A. Dobrescu, Electroweak symmetry breaking as a consequence of compact dimensions, Phys. Lett. B 461 (1999) 99 [hep-ph/9812349] [INSPIRE].

    ADS  Google Scholar 

  30. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Cacciapaglia, C. Csáki, J. Galloway, G. Marandella, J. Terning, et al., A GIM Mechanism from Extra Dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, Neutrino masses and mixing from S 4 flavor twisting, Phys. Rev. D 83 (2011) 033004 [arXiv:1010.3805] [INSPIRE].

    ADS  Google Scholar 

  33. A.E. Cárcamo Hernández, Sergey Kovalenko and Ivan Schmidt, Dirac neutrino oscillations in theories of N copies of the Standard Model, to appear.

  34. R. Chivukula, Lectures on technicolor and compositeness, hep-ph/0011264 [INSPIRE].

  35. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].

  36. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].

    ADS  Google Scholar 

  37. C.T. Hill, Topcolor: Top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [INSPIRE].

    ADS  Google Scholar 

  38. G. Burdman and L. Da Rold, Electroweak Symmetry Breaking from a Holographic Fourth Generation, JHEP 12 (2007) 086 [arXiv:0710.0623] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221]. 9 pages, LaTex Report-no: MIT-CTP-2860, PUPT-1860, BUHEP-99-9 [INSPIRE].

  40. A.K. Alok, A. Dighe and D. London, Constraints on the Four-Generation Quark Mixing Matrix from a Fit to Flavor-Physics Data, Phys. Rev. D 83 (2011) 073008 [arXiv:1011.2634] [INSPIRE].

    ADS  Google Scholar 

  41. G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].

    ADS  Google Scholar 

  42. J. Erler and P. Langacker, Precision Constraints on Extra Fermion Generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  44. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zb \( \overline b \)v, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  46. G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Curing the Ills of Higgsless models: The S parameter and unitarity, Phys. Rev. D 71 (2005) 035015 [hep-ph/0409126] [INSPIRE].

    ADS  Google Scholar 

  47. T. Gherghetta, TASI Lectures on a Holographic View of Beyond the Standard Model Physics, arXiv:1008.2570 [INSPIRE].

  48. G. Burdman and C.E. Haluch, Two Higgs Doublets from Fermion Condensation, JHEP 12 (2011) 038 [arXiv:1109.3914] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M.A. Luty, Dynamical electroweak symmetry breaking with two composite Higgs doublets, Phys. Rev. D 41 (1990) 2893 [INSPIRE].

    ADS  Google Scholar 

  50. W.A. Bardeen, C.T. Hill and M. Lindner, Minimal Dynamical Symmetry Breaking of the Standard Model, Phys. Rev. D 41 (1990) 1647 [INSPIRE].

    ADS  Google Scholar 

  51. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].

    ADS  Google Scholar 

  53. A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, et al., Anatomy of New Physics in B\( \overline B \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso R. Zerwekh.

Additional information

ArXiv ePrint: 1201.0878

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, A.E.C., Dib, C.O., Neill, N.A. et al. Quark masses and mixings in the RS1 model with a condensing 4th generation. J. High Energ. Phys. 2012, 132 (2012). https://doi.org/10.1007/JHEP02(2012)132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)132

Keywords

Navigation