Skip to main content
Log in

Real-virtual corrections for gluon scattering at NNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use the antenna subtraction method to isolate the mixed real-virtual infrared singularities present in gluonic scattering amplitudes at next-to-next-to-leading order. In a previous paper, we derived the subtraction term that rendered the double real radiation tree-level process finite in the single and double unresolved regions of phase space. Here, we show how to construct the real-virtual subtraction term using antenna functions with both initial- and final-state partons which removes the explicit infrared poles present in the one-loop amplitude, as well as the implicit singularities that occur in the soft and collinear limits. As an explicit example, we write down the subtraction term that describes the single unresolved contributions from the five-gluon one-loop process. The infrared poles are explicitly and locally cancelled in all regions of phase space prior to integration, leaving a finite remainder that can be safely evaluated numerically in four-dimensions. We show numerically that the subtraction term correctly approximates the matrix elements in the various single unresolved configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \alpha_S^3 \) : gluons only, Phys. Rev. Lett. 62 (1989) 726 [INSPIRE].

    Article  ADS  Google Scholar 

  2. S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order \( \$ \alpha_s^3 \) quarks and gluons, Phys. Rev. Lett. 64 (1990) 2121 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order \( \alpha_S^3 \) in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].

    Article  ADS  Google Scholar 

  4. W. Giele, E. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].

    Article  ADS  Google Scholar 

  5. W. Giele, E. Glover and D.A. Kosower, The two-jet differential cross section at \( \mathcal{O}\left( {\alpha_s^3} \right) \) in hadron collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].

    Article  ADS  Google Scholar 

  7. CDF-Run II collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section using the k T algorithmin p \( \overline p \) collisions at \( \sqrt {s} \) = 1.96 TeV with the CDF II detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].

  8. D0 collaboration, V. Abazov et al., Measurement of the inclusive jet cross-section in p \( \overline p \) collisions at s (1/2) = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].

    Article  ADS  Google Scholar 

  9. CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab Tevatron p \( \overline p \) collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

  10. ATLAS collaboration, G. Aad et al., Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1512 [arXiv:1009.5908] [INSPIRE].

    ADS  Google Scholar 

  11. CMS collaboration, S. Chatrchyan et al., Measurement of the inclusive jet cross section in pp collisions at \( \sqrt {s} \) = 7 TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Giele, E. Glover and J. Yu, The determination of α s at hadron colliders, Phys. Rev. D 53 (1996) 120 [hep-ph/9506442] [INSPIRE].

    ADS  Google Scholar 

  13. CDF collaboration, T. Affolder et al., Measurement of the strong coupling constant from inclusive jet production at the Tevatron \( \overline p \) p collider, Phys. Rev. Lett. 88 (2002) 042001 [hep-ex/0108034] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D0 collaboration, V. Abazov et al., Determination of the strong coupling constant from the inclusive jet cross section in ppbar collisions at \( \sqrt {s} \) = 1.96 TeV, Phys. Rev. D 80 (2009) 111107 [arXiv:0911.2710] [INSPIRE].

    ADS  Google Scholar 

  15. E. Glover, Progress in NNLO calculations for scattering processes, Nucl. Phys. Proc. Suppl. 116 (2003) 3 [hep-ph/0211412] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

  17. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Z. Nagy and Z. Trócsányi, Calculation of QCD jet cross-sections at next-to-leading order, Nucl. Phys. B 486 (1997) 189 [hep-ph/9610498] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Somogyi and Z. Trócsányi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [INSPIRE].

  21. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE].

    Article  ADS  Google Scholar 

  23. W.B. Kilgore, Subtraction terms for hadronic production processes at next-to-next-to-leading order, Phys. Rev. D 70 (2004) 031501 [hep-ph/0403128] [INSPIRE].

    ADS  Google Scholar 

  24. S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [INSPIRE].

    Article  ADS  Google Scholar 

  25. G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Somogyi and Z. Trócsányi, A Subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I, JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].

    Article  ADS  Google Scholar 

  29. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I, JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Somogyi, Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  34. C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, arXiv:1110.2368 [INSPIRE].

  37. R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, arXiv:1111.7041 [INSPIRE].

  38. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ →4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].

    Article  ADS  Google Scholar 

  42. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, arXiv:1110.2375 [INSPIRE].

  44. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Binoth and G. Heinrich, Numerical evaluation of multiloop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Heinrich, A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [hep-ph/0211144] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  50. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Heinrich, The sector decomposition approach to real radiation at NNLO, Nucl. Phys. Proc. Suppl. 157 (2006) 43 [hep-ph/0601232] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e + e → 2 jets through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  55. K. Melnikov and F. Petriello, The W boson production cross section at the LHC through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].

    ADS  Google Scholar 

  57. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].

    ADS  Google Scholar 

  58. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Weinzierl, The Infrared structure of e + e → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].

    ADS  Google Scholar 

  66. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at \( O\left( {\alpha_s^3} \right) \) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].

    Article  ADS  Google Scholar 

  67. S. Weinzierl, Jet algorithms in electron-positron annihilation: Perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].

  68. A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  70. W. Bernreuther, C. Bogner and O. Dekkers, The real radiation antenna function for \( S \to Q\overline Q q\overline q \) at NNLO QCD,JHEP 06(2011) 032 [arXiv:1105.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].

    Article  ADS  Google Scholar 

  75. E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].

    Article  Google Scholar 

  76. S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

    ADS  Google Scholar 

  77. G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

    ADS  Google Scholar 

  78. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

    ADS  Google Scholar 

  80. D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].

    Article  ADS  Google Scholar 

  82. Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].

    ADS  Google Scholar 

  83. S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

    Article  ADS  Google Scholar 

  84. I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, Nucl. Phys. B 856 (2012) 228 [arXiv:1107.4384] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].

    ADS  Google Scholar 

  86. D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097] [INSPIRE].

    ADS  Google Scholar 

  87. D.A. Kosower, All orders singular emission in gauge theories, Phys. Rev. Lett. 91 (2003) 061602 [hep-ph/0301069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. S. Weinzierl, Subtraction terms for one loop amplitudes with one unresolved parton, JHEP 07 (2003) 052 [hep-ph/0306248] [INSPIRE].

    Article  ADS  Google Scholar 

  89. Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. S. Badger and E. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].

    Article  ADS  Google Scholar 

  91. A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].

    Article  ADS  Google Scholar 

  92. W.A. Bardeen, A. Buras, D. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].

    ADS  Google Scholar 

  93. D. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    Article  ADS  Google Scholar 

  94. H. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  95. W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    Article  ADS  Google Scholar 

  96. D. Jones, Two loop diagrams in Yang-Mills theory, Nucl. Phys. B 75 (1974) 531 [INSPIRE].

    Article  ADS  Google Scholar 

  97. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  98. G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  99. W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett. B 97 (1980) 437 [INSPIRE].

    ADS  Google Scholar 

  100. E. Floratos, D. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories: the anomalous dimensions of Wilson operators, Nucl. Phys. B 129 (1977) 66 [Erratum ibid. B 139 (1978) 545-546] [INSPIRE].

  101. E. Floratos, D. Ross and C.T. Sachrajda, Higher order effects in asymptotically free gauge theories. 2. Flavor singlet Wilson operators and coefficient functions, Nucl. Phys. B 152 (1979) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  102. F.A. Berends and W. Giele, The six gluon process as an example of Weyl-Van Der Waerden spinor calculus, Nucl. Phys. B 294 (1987) 700 [INSPIRE].

    Article  ADS  Google Scholar 

  103. D. Kosower, B.-H. Lee and V. Nair, Multi gluon scattering: a string based calculation, Phys. Lett. B 201 (1988) 85 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  104. M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].

    Article  ADS  Google Scholar 

  105. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    Article  ADS  Google Scholar 

  106. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].

    Article  ADS  Google Scholar 

  107. S. Badger, B. Biedermann and P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011) 1674 [arXiv:1011.2900] [INSPIRE].

    Article  ADS  Google Scholar 

  108. R. Kleiss, W. Stirling and S. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  109. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  110. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Pires and E. Glover, Double real radiation corrections to gluon scattering at NNLO, Nucl. Phys. Proc. Suppl. 205-206 (2010) 176 [arXiv:1006.1849] [INSPIRE].

    Article  Google Scholar 

  112. S. Weinzierl, Status of jet cross sections to NNLO, Nucl. Phys. Proc. Suppl. 160 (2006) 126 [hep-ph/0606301] [INSPIRE].

    Article  ADS  Google Scholar 

  113. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

    ADS  Google Scholar 

  114. D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].

    ADS  Google Scholar 

  115. A. Vogt, S. Moch and J. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  116. S. Buehler and C. Duhr, CHAPLINComplex harmonic polylogarithms in Fortran, arXiv:1106.5739 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Pires.

Additional information

ArXiv ePrint: 1112.3613

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridder, A.GD., Glover, E.W.N. & Pires, J. Real-virtual corrections for gluon scattering at NNLO. J. High Energ. Phys. 2012, 141 (2012). https://doi.org/10.1007/JHEP02(2012)141

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)141

Keywords

Navigation