Skip to main content
Log in

Explicit and spontaneous breaking of SU(3) into its finite subgroups

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the breaking of SU(3) into its subgroups from the viewpoints of explicit and spontaneous breaking. A one-to-one link between these two approaches is given by the complex spherical harmonics, which form a complete set of SU(3)-representation functions. An invariant of degrees p and q in complex conjugate variables corresponds to a singlet, or vacuum expectation value, in a (p, q)-representation of SU(3). We review the formalism of the Molien function, which contains information on primary and secondary invariants. Generalizations of the Molien function to the tensor generating functions are discussed. The latter allows all branching rules to be deduced. We have computed all primary and secondary invariants for all proper finite subgroups of order smaller than 512, for the entire series of groups Δ(3n2), Δ(6n2), and for all crystallographic groups. Examples of sufficient conditions for breaking into a subgroup are worked out for the entire Tn[a]-, Δ(3n2)-, Δ(6n2)-series and for all crystallographic groups Σ(X). The corresponding invariants provide an alternative definition of these groups. A Mathematica package, SUtree, is provided which allows the extraction of the invariants, Molien and generating functions, syzygies, VEVs, branching rules, character tables, matrix (p, q)SU(3)-representations, Kronecker products, etc. for the groups discussed above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  2. F. Caravaglios and S. Morisi, Neutrino masses and mixings with an S3 family permutation symmetry, hep-ph/0503234 [INSPIRE].

  3. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].

    Article  ADS  Google Scholar 

  4. W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].

    ADS  Google Scholar 

  7. I. de Medeiros Varzielas, S. King and G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].

    ADS  Google Scholar 

  8. C. Hagedorn, M. Lindner and R. Mohapatra, S4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.F. King and M. Malinsky, A4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007)351 [hep-ph/0610250] [INSPIRE].

    ADS  Google Scholar 

  10. S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].

    ADS  Google Scholar 

  11. C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z(7) and Z(3), Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [INSPIRE].

    ADS  Google Scholar 

  12. F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].

    ADS  Google Scholar 

  16. F. Bazzocchi and S. Morisi, S4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [arXiv:0811.0345] [INSPIRE].

    ADS  Google Scholar 

  17. F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S(4)-based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S4 based models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [INSPIRE].

    ADS  Google Scholar 

  19. M.-C. Chen and S.F. King, A4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].

    ADS  Google Scholar 

  22. F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A4 models, JHEP 03 (2010)084 [arXiv:0910.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL2(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Hagedorn and M. Serone, Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries, JHEP 10 (2011) 083 [arXiv:1106.4021] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.D.A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

    ADS  Google Scholar 

  27. S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].

    Article  ADS  Google Scholar 

  28. W. Buchmüller and J. Schmidt, Higgs versus Matter in the Heterotic Landscape, Nucl. Phys. B 807 (2009) 265 [arXiv:0807.1046] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018 [arXiv:0907.2332] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. W. Burnside, Theory of groups of finite order, second edition, Cambridge University Press, Cambridge U.K. (1897).

    Google Scholar 

  32. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen (in German), Math. Ann. 77 (1916) 89.

    Article  Google Scholar 

  33. B. Sturmfels, Algorithms in Invariant Theory, Texts and Monographs in Symbolic Computation, Springer, Heidelberg Germany (1993).

    Google Scholar 

  34. B. Meyer, On the symmetries of spherical harmonics, Canad. J. Math. 6 (1954) 135.

    Article  MATH  Google Scholar 

  35. M. Koca, M. Al-Barwani and R. Koc, Breaking SO(3) into its closed subgroups by Higgs mechanism, J. Phys. A 30 (1997) 2109 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. J. Patera and R.T. Sharp, Generating Functions For Characters Of Group Representations And Their Applications, Lect. Notes Phys. 94 (1979) 175.

    Article  ADS  Google Scholar 

  37. T. Molien, Über die Invarianten der linearen Substitutionsgruppen (in German), Sitzungber. Konig. Preuss. Akad. Wiss. (J. Berl. Ber.) 52 (1897) 1152.

    Google Scholar 

  38. J.D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Springer, Heidelberg Germany (1996).

    Google Scholar 

  39. L. O’Raifeartaigh, Group Structure Of Gauge Theories, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1986).

    Book  Google Scholar 

  40. L. Michel, Symmetry defects and broken symmetry. Configurations — hidden symmetry, Rev. Mod. Phys. 52 (1980) 617 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M.J. Linehan and G.E. Stedman, Little groups of irreps of O(3), SO(3), and the infinite axial subgroups, J. Phys. A 34 (2001) 6663 [math-ph/0012008].

    MathSciNet  ADS  Google Scholar 

  42. P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010) 395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479] [INSPIRE].

    MathSciNet  Google Scholar 

  43. G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and Applications of Finite Groups, John Wiley & Sons, New York U.S.A. (1916) [Dover, New York U.S.A. (1961)].

    MATH  Google Scholar 

  44. L. Michel and B.I. Zhilinskii, Symmetry, Invariants, and Topology. I. Basic Tools, Phys. Rept. 341 (2001) 11.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. K.M. Parattu and A. Wingerter, Tribimaximal Mixing From Small Groups, Phys. Rev. D 84 (2011)013011 [arXiv:1012.2842] [INSPIRE].

    ADS  Google Scholar 

  46. H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. W. Fairbairn and T. Fulton, Some comments on finite subgroups of SU(3), J. Math. Phys. 23 (1982)1747 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A. Bovier, M. Luling and D. Wyler, Representations and Clebsch-Gordan coefficients of Z metacyclic groups, J. Math. Phys. 22 (1981) 1536 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. B. Durhuus, T. Jonsson and J.F. Wheater, Random walks on combs, J. Phys. A 39 (2006) 1009 [hep-th/0509191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12, (2008) http://www.gap-system.org

  51. H.U. Besche, B. Eick and E.A. O’Brien, SmallGroups — a GAP package (2002), http://www.gap-system.org/Packages/sgl.html, http://www.icm.tu-bs.de/ag_algebra/software/small/

  52. J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge U.K. (1990).

    Book  MATH  Google Scholar 

  53. P.O. Ludl, Comments on the classification of the finite subgroups of SU(3), J. Phys. A 44 (2011)255204 [arXiv:1101.2308] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. W. Grimus and P.O. Ludl, Finite flavour groups of fermions, arXiv:1110.6376 [INSPIRE].

  55. P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the lepton sector, arXiv:0907.5587 [INSPIRE].

  56. R. Zwicky and T. Fischbacher, On discrete minimal flavour violation, Phys. Rev. D 80 (2009)076009 [arXiv:0908.4182] [INSPIRE].

    ADS  Google Scholar 

  57. C. Luhn, Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian’s approach, JHEP 03 (2011) 108 [arXiv:1101.2417] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997), pg. 890.

    Book  MATH  Google Scholar 

  59. P. Ramond, Group Theory in Physics. A physicists survey, Cambridge University Press, Cambridge U.K. (2010).

    Google Scholar 

  60. J.F. Cornwell, Group Theory in Physics, Vol. 1, Academic Press, New York U.S.A. (1997).

    MATH  Google Scholar 

  61. W. Specht, Zur Theorie der Gruppen linearer Substitutionen II (in German), Jber. Deutsch. Math. Verein. 49 (1940) 207.

    MathSciNet  Google Scholar 

  62. A. Hanany and Y.-H. He, A Monograph on the classification of the discrete subgroups of SU(4), JHEP 02 (2001) 027 [hep-th/9905212] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. L.L. Everett and A.J. Stuart, Icosahedral A5 Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].

    ADS  Google Scholar 

  64. G. Etesi, Spontaneous symmetry breaking in SO(3) gauge theory to discrete subgroups, J. Math. Phys. 37 (1996) 1596 [hep-th/9706029] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. M. Koca, R. Koc and H. Tutunculer, Explicit breaking of SO(3) with Higgs fields in the representations L = 2 and L = 3, Int. J. Mod. Phys. A 18 (2003) 4817 [hep-ph/0410270] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. M. Holthausen and M.A. Schmidt, Natural Vacuum Alignment from Group Theory: The Minimal Case, JHEP 01 (2012) 126 [arXiv:1111.1730] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J. Berger and Y. Grossman, Model of leptons from SO(3) → A4, JHEP 02 (2010) 071 [arXiv:0910.4392] [INSPIRE].

    Article  ADS  Google Scholar 

  68. G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J. Patera, R.T. Sharp and P. Winternitz, Polynomial irreducible tensors for point groups, J. Math. Phys. 19 (1978) 2362.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. R. King, J. Patera and R.T. Sharp, On finite and continuous little groups of representations of semi-simple Lie groups, J. Phys. A 15 (1982) 1143.

    MathSciNet  ADS  Google Scholar 

  71. P. Desmier, R. Sharp and J. Patera, Analytic SU(3) states in a finite subgroup basis, J. Math. Phys. 23 (1982) 1393 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. J.D. Louck, Unitary symmetry and combinatorics, World Scientific, New York U.S.A. (2008).

    Book  MATH  Google Scholar 

  73. M. Ikeda, On Complex Spherical Harmonics, Prog. Theor. Phys. 32 (1964) 178.

    Article  ADS  MATH  Google Scholar 

  74. T. Kayama, On the normalization of solid harmonics for U(3), Prog. Theor. Phys. 39 (1968) 850 [INSPIRE].

    Article  ADS  Google Scholar 

  75. H. Georgi, Frontiers in Physics. Vol. 54: Lie Algebras in Particle Physics. From Isospin to Unified Theories, Westview Press, Boulder U.S.A. (1982).

    Google Scholar 

  76. R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Merle.

Additional information

ArXiv ePrint: 1110.4891

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merle, A., Zwicky, R. Explicit and spontaneous breaking of SU(3) into its finite subgroups. J. High Energ. Phys. 2012, 128 (2012). https://doi.org/10.1007/JHEP02(2012)128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)128

Keywords

Navigation