Skip to main content
Log in

New numerical results and novel effective string predictions for Wilson loops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the prediction of the Nambu-Goto effective string model for a rectangular Wilson loop up to three loops. This is done through the use of an operatorial, first order formulation and of the open string analogues of boundary states. This result is interesting since there are universality theorems stating that the predictions up to three loops are common to all effective string models. To test the effective string prediction, we use a Montecarlo evaluation, in the 3 d Ising gauge model, of an observable (the ratio of two Wilson loops with the same perimeter) for which boundary effects are relatively small. Our simulation attains a level of precision which is sufficient to test the two-loop correction. The three-loop correction seems to go in the right direction, but is actually yet beyond the reach of our simulation, since its effect is comparable with the statistical errors of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  2. S. Mandelstam, Vortices and Quark Confinement in Nonabelian Gauge Theories, Phys. Rept. 23 (1976) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  3. H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. ’t Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. A.M. Polyakov, String Representations and Hidden Symmetries for Gauge Fields, Phys. Lett. B 82 (1979) 247 [INSPIRE].

    ADS  Google Scholar 

  6. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. Nambu, Strings, Monopoles and Gauge Fields, Phys. Rev. D 10 (1974) 4262 [INSPIRE].

    ADS  Google Scholar 

  8. Y. Nambu, QCD and the String Model, Phys. Lett. B 80 (1979) 372 [INSPIRE].

    ADS  Google Scholar 

  9. M. Lüscher, K. Symanzik and P. Weisz, Anomalies of the Free Loop Wave Equation in the WKB Approximation, Nucl. Phys. B 173 (1980) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Lüscher, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, Nucl. Phys. B 180 (1981) 317 [INSPIRE].

    Article  ADS  Google Scholar 

  11. Y. Nambu, Quark model and the factorization of Veneziano amplitude, in Symmetries and Quark Models, R. Chand ed., Gordon and Breach, New York U.S.A. (1970).

    Google Scholar 

  12. T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys. 46 (1971) 1560 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. K. Dietz and T. Filk, On the renormalization of string functionals, Phys. Rev. D 27 (1983) 2944 [INSPIRE].

    ADS  Google Scholar 

  14. M. Teper, Large-N and confining flux tubes as strings — a view from the lattice, Acta Phys. Polon. B 40 (2009) 3249 [arXiv:0912.3339] [INSPIRE].

    Google Scholar 

  15. M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].

    Article  Google Scholar 

  16. H.B. Meyer, Poincaré invariance in effective string theories, JHEP 05 (2006) 066 [hep-th/0602281] [INSPIRE].

    Article  ADS  Google Scholar 

  17. O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065 [arXiv:1008.2636] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Caselle et al., Rough interfaces beyond the Gaussian approximation, Nucl. Phys. B 432 (1994) 590 [hep-lat/9407002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Caselle, M. Hasenbusch and M. Panero, The Interface free energy: Comparison of accurate Monte Carlo results for the 3D Ising model with effective interface models, JHEP 09 (2007) 117 [arXiv:0707.0055] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Caselle, M. Hasenbusch and M. Panero, High precision Monte Carlo simulations of interfaces in the three-dimensional Ising model: A Comparison with the Nambu-Goto effective string model, JHEP 03 (2006) 084 [hep-lat/0601023] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Caselle, M. Hasenbusch and M. Panero, String effects in the 3D gauge Ising model, JHEP 01 (2003) 057 [hep-lat/0211012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Caselle, M. Hasenbusch and M. Panero, Comparing the Nambu-Goto string with LGT results, JHEP 03 (2005) 026 [hep-lat/0501027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Caselle and M. Zago, A new approach to the study of effective string corrections in LGTs, Eur. Phys. J. C 71 (2011) 1658 [arXiv:1012.1254] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Billó and M. Caselle, Polyakov loop correlators from D0-brane interactions in bosonic string theory, JHEP 07 (2005) 038 [hep-th/0505201] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Billó, M. Caselle and L. Ferro, The Partition function of interfaces from the Nambu-Goto effective string theory, JHEP 02 (2006) 070 [hep-th/0601191] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Billó, M. Caselle and L. Ferro, Universal behaviour of interfaces in 2 d and dimensional reduction of Nambu-Goto strings, Nucl. Phys. B 795 (2008) 623 [arXiv:0708.3302] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. M.B. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction, Cambridge University Press, Cambridge U.K. (1987).

    Google Scholar 

  30. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  31. P. Olesen, Strings and QCD, Phys. Lett. B 160 (1985) 144 [INSPIRE].

    ADS  Google Scholar 

  32. A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  35. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  37. A.M. Polyakov, The wall of the cave, Int. J. Mod. Phys. A 14 (1999) 645 [hep-th/9809057] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. M. Caselle, R. Fiore, F. Gliozzi, M. Hasenbusch and P. Provero, String effects in the Wilson loop: A High precision numerical test, Nucl. Phys. B 486 (1997) 245 [hep-lat/9609041] [INSPIRE].

    Article  ADS  Google Scholar 

  39. B. Durhuus, H.B. Nielsen, P. Olesen and J. Petersen, Dual Models As Saddle Point Approximations To Polyakov’s Quantized String, Nucl. Phys. B 196 (1982) 498 [INSPIRE].

    Article  ADS  Google Scholar 

  40. B. Durhuus, P. Olesen and J. Petersen, Polyakov’s Quantized String With Boundary Terms, Nucl. Phys. B 198 (1982) 157 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. B. Durhuus, P. Olesen and J. Petersen, Polyakov’s Quantized String With Boundary Terms. 2, Nucl. Phys. B 201 (1982) 176 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Di Vecchia, B. Durhuus, P. Olesen and J. Petersen, Fermionic Strings With Boundary Terms, Nucl. Phys. B 207 (1982) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  43. O. Alvarez, Theory of Strings with Boundaries: Fluctuations, Topology and Quantum Geometry, Nucl. Phys. B 216 (1983) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Billó’, M. Caselle, V. Verduci and M. Zago, New results on the effective string corrections to the inter-quark potential, PoS(Lattice 2010)273 [arXiv:1012.3935] [INSPIRE].

  45. M. Caselle, M. Hasenbusch and M. Panero, Short distance behavior of the effective string, JHEP 05 (2004) 032 [hep-lat/0403004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Necco and R. Sommer, The N f = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008] [INSPIRE].

    Article  ADS  Google Scholar 

  47. B.B. Brandt, Probing boundary-corrections to Nambu-Goto open string energy levels in 3 d SU(2) gauge theory, JHEP 02 (2011) 040 [arXiv:1010.3625] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y. Imamura, H. Isono and Y. Matsuo, Boundary states in open string channel and CFT near corner, Prog. Theor. Phys. 115 (2006) 979 [hep-th/0512098] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. C.G. Callan Jr., C. Lovelace, C. Nappi and S. Yost, Loop Corrections to Superstring Equations of Motion, Nucl. Phys. B 308 (1988) 221 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Di Vecchia and A. Liccardo, D-branes in string theory. 1., NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 (2000) 1 [hep-th/9912161] [INSPIRE].

    Google Scholar 

  51. B. Durhuus, P. Olesen and J. Petersen, On The Static Potential In Polyakov’s Theory Of The Quantized String, Nucl. Phys. B 232 (1984) 291 [INSPIRE].

    Article  ADS  Google Scholar 

  52. P. Orland, Evolution of fixed end strings and the off-shell disk amplitude, Nucl. Phys. B 605 (2001) 64 [hep-th/0101173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Billó.

Additional information

ArXiv ePrint: 1105.1869

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billó, M., Caselle, M. & Pellegrini, R. New numerical results and novel effective string predictions for Wilson loops. J. High Energ. Phys. 2012, 104 (2012). https://doi.org/10.1007/JHEP01(2012)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)104

Keywords

Navigation