Skip to main content
Log in

Comments on non-holomorphic modular forms and non-compact superconformal field theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend our previous work [1] on the non-compact \( \mathcal{N} = {2} \) SCF T 2 defined as the supersymmetric SL(2, \( \mathbb{R} \))/U(1)-gauged WZW model. Starting from path-integral calculations of torus partition functions of both the axial-type (‘cigar’) and the vector-type (‘trumpet’) models, we study general models of the \( {\mathbb{Z}_M} \) -orbifolds and M -fold covers with an arbitrary integer M. We then extract contributions of the degenerate representations (‘discrete characters’) in such a way that good modular properties are preserved. The ‘modular completion’ of the extended discrete characters introduced in [1] are found to play a central role as suitable building blocks in every model of orbifolds or covering spaces. We further examine a large M-limit (the ‘continuum limit’), which ‘deconstructs’ the spectral flow orbits while keeping a suitable modular behavior. The discrete part of partition function as well as the elliptic genus is then expanded by the modular completions of irreducible discrete characters, which are parameterized by both continuous and discrete quantum numbers modular transformed in a mixed way. This limit is naturally identified with the universal cover of trumpet model. We finally discuss a classification of general modular invariants based on the modular completions of irreducible characters constructed above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Eguchi and Y. Sugawara, Non-holomorphic modular forms and SL(2, \( \mathbb{R} \))/U(1) superconformal field theory, JHEP 03 (2011) 107 [arXiv:1012.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. I. Bars and D. Nemeschansky, String propagation in backgrounds with curved space-time, Nucl. Phys. B 348 (1991) 89 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Troost, The non-compact elliptic genus: mock or modular, JHEP 06 (2010) 104 [arXiv:1004.3649] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.K. Ashok and J. Troost, A twisted non-compact elliptic genus, JHEP 03 (2011) 067 [arXiv:1101.1059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Israel, A. Pakman and J. Troost, Extended SL(2, \( \mathbb{R} \))/U(1) characters, or modular properties of a simple nonrational conformal field theory, JHEP 04 (2004) 043 [hep-th/0402085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Eguchi and Y. Sugawara, SL(2, \( \mathbb{R} \))/U(1) supercoset and elliptic genera of noncompact Calabi-Yau manifolds, JHEP 05 (2004) 014 [hep-th/0403193] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Israel, C. Kounnas, A. Pakman and J. Troost, The partition function of the supersymmetric two-dimensional black hole and little string theory, JHEP 06 (2004) 033 [hep-th/0403237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Eguchi and Y. Sugawara, Conifold type singularities, N = 2 Liouville and SL(2 : R)/U(1) theories, JHEP 01 (2005) 027 [hep-th/0411041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Eguchi and Y. Sugawara, Modular bootstrap for boundary N = 2 Liouville theory, JHEP 01 (2004) 025 [hep-th/0311141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. L.J. Mordell, The value of the definite integral \( \int_{\infty }^{\infty } {\frac{{{e^{{a{t^2}}}} + bt}}{{{e^{{ect}}} + d}}dt} \) Quart. J. Math. 68 (1920) 329.

    Google Scholar 

  16. G.N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc. 11 (1936) 55.

    Article  Google Scholar 

  17. T. Eguchi and A. Taormina, Character formulas for the N = 4 superconformal algebra, Phys. Lett. B 200 (1988) 315 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. T. Eguchi and A. Taormina, On the unitary representations of N = 2 AND N = 4 superconformal algebras, Phys. Lett. B 210 (1988) 125 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser, Basel Switzerland (1985).

    MATH  Google Scholar 

  20. S. Zwegers, Mock Theta functions, Ph.D. Thesis, Utrecht University, Utrecht Netherlands (2002).

  21. K. Bringman and K. Ono, Lifting cusp forms to Maass forms with an application to partitions, Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 3725 .

    Article  ADS  Google Scholar 

  22. T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions, J. Phys. A 42 (2009) 304010 [arXiv:0812.1151] [INSPIRE].

    MathSciNet  Google Scholar 

  23. T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions 2. Rademacher Expansion for K3 Surface, arXiv:0904.0911 [INSPIRE].

  24. V. Fateev and A. Zamolodchikov, Parafermionic currents in the two-dimensional conformal quantum field theory and selfdual critical points in Z(n) invariant statistical systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].

    MathSciNet  Google Scholar 

  25. D. Gepner and Z.-a. Qiu, Modular invariant partition functions for parafermionic field theories, Nucl. Phys. B 285 (1987) 423 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Karabali and H.J. Schnitzer, BRST quantization of the gauged WZW action and coset conformal field theories, Nucl. Phys. B 329 (1990) 649 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Gawedzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. H.J. Schnitzer, A path integral construction of superconformal field theories from a gauged supersymmetric Wess-Zumino-Witten action, Nucl. Phys. B 324 (1989) 412 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. A. Polishchuk, M.P. Appell’s function and vector bundles of rank 2 on elliptic curve, math/9810084.

  34. A. Semikhatov, A. Taormina and I. Tipunin, Higher level Appell functions, modular transformations and characters, math/0311314 [INSPIRE].

  35. K. Gawedzki, Noncompact WZW conformal field theories, hep-th/9110076 [INSPIRE].

  36. W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. V. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B 186 (1987) 43 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. E. Kiritsis, Character formulae and the structure of the representations of the N = 1, N = 2 superconformal algebras, Int. J. Mod. Phys. A 3 (1988) 1871 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. L.J. Dixon, M.E. Peskin and J.D. Lykken, N = 2 superconformal symmetry and SO(2, 1) current algebra, Nucl. Phys. B 325 (1989) 329 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Giveon and D. Kutasov, Comments on double scaled little string theory, JHEP 01 (2000) 023 [hep-th/9911039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, \( \mathbb{R} \)) WZW model. 1. The spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sugawara.

Additional information

ArXiv ePrint: 1109.3365

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, Y. Comments on non-holomorphic modular forms and non-compact superconformal field theories. J. High Energ. Phys. 2012, 98 (2012). https://doi.org/10.1007/JHEP01(2012)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)098

Keywords

Navigation