Skip to main content
Log in

Moduli stabilisation in heterotic models with standard embedding

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this note we analyse the issue of moduli stabilisation in 4d models obtained from heterotic string compactifications on manifolds with SU(3) structure with standard embedding. In order to deal with tractable models we first integrate out the massive fields. We argue that one can not only integrate out the moduli fields, but along the way one has to truncate also the corresponding matter fields. We show that the effective models obtained in this way do not have satisfactory solutions. We also look for stabilised vacua which take into account the presence of the matter fields. We argue that this also fails due to a no-go theorem for Minkowski vacua in the moduli sector which we prove in the end. The main ingredient for this no-go theorem is the constraint on the fluxes which comes from the Bianchi identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [SPIRES].

    Article  ADS  Google Scholar 

  4. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].

    Article  Google Scholar 

  5. R. Blumenhagen, S. Moster and E. Plauschinn, String GUT scenarios with stabilised moduli, Phys. Rev. D 78 (2008) 066008 [arXiv:0806.2667] [SPIRES].

    ADS  Google Scholar 

  6. R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [SPIRES].

    Article  ADS  Google Scholar 

  8. A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. C.M. Hull, Superstring compactifications with torsion and space-time supersymmetry, Print-86-0251, Cambridge university, Cambridge U.K. (1986) [SPIRES].

  10. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Becker and K. Dasgupta, Heterotic strings with torsion, JHEP 11 (2002) 006 [hep-th/0209077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].

    Article  ADS  Google Scholar 

  13. K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds. I, JHEP 04 (2003) 007 [hep-th/0301161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, Properties of heterotic vacua from superpotentials, Nucl. Phys. B 666 (2003) 144 [hep-th/0304001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [SPIRES].

    Article  ADS  Google Scholar 

  16. G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, Heterotic string theory on non-Kähler manifolds with H-flux and gaugino condensate, Fortsch. Phys. 52 (2004) 483 [hep-th/0310021] [SPIRES].

    Article  ADS  Google Scholar 

  17. K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds. II, Nucl. Phys. B 678 (2004) 19 [hep-th/0310058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Serone and M. Trapletti, String vacua with flux from freely-acting orbifolds, JHEP 01 (2004) 012 [hep-th/0310245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Becker and K. Dasgupta, Kähler versus non-Kähler compactifications, hep-th/0312221 [SPIRES].

  20. A.R. Frey and M. Lippert, AdS strings with torsion: non-complex heterotic compactifications, Phys. Rev. D 72 (2005) 126001 [hep-th/0507202] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. K. Becker and L.-S. Tseng, Heterotic flux compactifications and their moduli, Nucl. Phys. B 741 (2006) 162 [hep-th/0509131] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009 [hep-th/0408121] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S. Gurrieri, A. Lukas and A. Micu, Heterotic string compactifications on half-flat manifolds II, JHEP 12 (2007) 081 [arXiv:0709.1932] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Gurrieri and A. Micu, Type IIB theory on half-flat manifolds, Class. Quant. Grav. 20 (2003) 2181 [hep-th/0212278] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special quaternionic manifolds, Phys. Lett. B 610 (2005) 147 [hep-th/0410290] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. A. Tomasiello, Topological mirror symmetry with fluxes, JHEP 06 (2005) 067 [hep-th/0502148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals, Nucl. Phys. B 748 (2006) 200 [hep-th/0602241] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [SPIRES].

    Article  ADS  Google Scholar 

  32. A. Micu, A note on moduli stabilisation in heterotic models in the presence of matter fields, Phys. Lett. B 674 (2009) 139 [arXiv:0812.2172] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. T. Ali and G.B. Cleaver, A note on the standard embedding on half-flat manifolds, JHEP 07 (2008) 121 [arXiv:0711.3248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, arXiv:0910.5464 [SPIRES].

  35. J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy D = 4, N = 1 supergravity theory extracted from the D = 10, N = 1 superstring, Phys. Lett. B 155 (1985) 65 [SPIRES].

    ADS  Google Scholar 

  36. M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino condensation in superstring models, Phys. Lett. B 156 (1985) 55 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. L.J. Dixon, V. Kaplunovsky and J. Louis, On effective field theories describing (2, 2) vacua of the heterotic string, Nucl. Phys. B 329 (1990) 27 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Gallego and M. Serone, An effective description of the landscape — I, JHEP 01 (2009) 056 [arXiv:0812.0369] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Gallego and M. Serone, An effective description of the landscape — II, JHEP 06 (2009) 057 [arXiv:0904.2537] [SPIRES].

    Article  ADS  Google Scholar 

  41. B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compactifications, JHEP 03 (2006) 005 [hep-th/0507173] [SPIRES].

    Article  Google Scholar 

  42. R. Rohm and E. Witten, The antisymmetric tensor field in superstring theory, Annals Phys. 170 (1986) 454 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy limit of superstring theories, Nucl. Phys. B 267 (1986) 365 [SPIRES].

    Article  ADS  Google Scholar 

  44. S. Gukov, S. Kachru, X. Liu and L. McAllister, Heterotic moduli stabilization with fractional Chern-Simons invariants, Phys. Rev. D 69 (2004) 086008 [hep-th/0310159] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Micu.

Additional information

ArXiv ePrint: 0911.2311

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micu, A. Moduli stabilisation in heterotic models with standard embedding. J. High Energ. Phys. 2010, 11 (2010). https://doi.org/10.1007/JHEP01(2010)011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)011

Keywords

Navigation