Skip to main content
Log in

Probing CP violation with and without momentum reconstruction at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the potential to observe CP-violating effects in SUSY cascade decay chains at the LHC. We consider squark and gluino production followed by subsequent decays into neutralinos with a three-body leptonic decay in the final step. Asymmetries composed by triple products of momenta of the final state particles are sensitive to CP-violating effects. Due to large boosts these asymmetries can be difficult to observe at a hadron collider. We show that using all available kinematic information one can reconstruct the decay chains on an event-by-event basis even in the case of 3-body decays, neutrinos and LSPs in the final state. We also discuss the most important experimental effects like major backgrounds and momentum smearing due to finite detector resolution. We show that with 300 fb−1 of collected data, CP violation may be discovered at the LHC for a wide range of the phase of the bino mass parameter M 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [SPIRES].

    ADS  Google Scholar 

  2. J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [SPIRES].

    ADS  Google Scholar 

  3. J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Buchmueller et al., Predictions for supersymmetric particle masses in the CMSSM using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [SPIRES].

    Article  ADS  Google Scholar 

  5. O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES].

    Article  Google Scholar 

  6. P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC, arXiv:0907.2589 [SPIRES].

  7. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [SPIRES].

    Article  ADS  Google Scholar 

  8. M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [SPIRES].

    Article  ADS  Google Scholar 

  9. V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number non-conservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [SPIRES].

    Article  Google Scholar 

  10. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].

    Article  ADS  Google Scholar 

  11. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].

    Article  ADS  Google Scholar 

  12. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  13. T. Ibrahim and P. Nath, CP violation from standard model to strings, Rev. Mod. Phys. 80 (2008) 577 [arXiv:0705.2008] [SPIRES].

    Article  ADS  Google Scholar 

  14. J. Ellis, F. Moortgat, G. Moortgat-Pick, J.M. Smillie and J. Tattersall, Measurement of CP-violation in stop cascade decays at the LHC, Eur. Phys. J. C 60 (2009) 633 [arXiv:0809.1607] [SPIRES].

    Article  ADS  Google Scholar 

  15. J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [SPIRES].

    Article  ADS  Google Scholar 

  16. Y. Kizukuri and N. Oshimo, The neutron and electron electric dipole moments in supersymmetric theories, Phys. Rev. D 46 (1992) 3025 [SPIRES].

    ADS  Google Scholar 

  17. T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [hep-ph/9807501] [SPIRES].

    ADS  Google Scholar 

  18. T. Ibrahim and P. Nath, Large CP phases and the cancellation mechanism in EDMs in SUSY, string and brane models, Phys. Rev. D 61 (2000) 093004 [hep-ph/9910553] [SPIRES].

    ADS  Google Scholar 

  19. M. Brhlik, G.J. Good and G.L. Kane, Electric dipole moments do not require the CP-violating phases of supersymmetry to be small, Phys. Rev. D 59 (1999) 115004 [hep-ph/9810457] [SPIRES].

    ADS  Google Scholar 

  20. S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [SPIRES].

    Article  ADS  Google Scholar 

  21. R.L. Arnowitt, B. Dutta and Y. Santoso, SUSY phases, the electron electric dipole moment and the muon magnetic moment, Phys. Rev. D 64 (2001) 113010 [hep-ph/0106089] [SPIRES].

    ADS  Google Scholar 

  22. J.S. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].

    Article  ADS  Google Scholar 

  23. J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [SPIRES].

    Article  ADS  Google Scholar 

  24. O. Kittel, SUSY CP phases and asymmetries at colliders, J. Phys. Conf. Ser. 171 (2009) 012094 [arXiv:0904.3241] [SPIRES].

    Article  ADS  Google Scholar 

  25. S. Hesselbach, CP Violation in SUSY Particle Production and Decay, arXiv:0709.2679 [SPIRES].

  26. S. Kraml, CP violation in SUSY, arXiv:0710.5117 [SPIRES].

  27. P. Langacker, G. Paz, L.-T. Wang and I. Yavin, A T-odd observable sensitive to CP-violating phases in squark decay, JHEP 07 (2007) 055 [hep-ph/0702068] [SPIRES].

    Article  ADS  Google Scholar 

  28. F. Deppisch and O. Kittel, Probing SUSY CP-violation in two-body stop decays at the LHC, JHEP 09 (2009) 110 [arXiv:0905.3088] [SPIRES].

    Article  Google Scholar 

  29. J.A. Aguilar-Saavedra, CP violation in selectron cascade decays \( {\tilde e_L} \to e\tilde \chi_1^0{\mu^{+} }{\mu^{-} } \), Phys. Lett. B 596 (2004) 247 [hep-ph/0403243] [SPIRES].

    ADS  Google Scholar 

  30. J.A. Aguilar-Saavedra, Study of selectron properties in the \( \tilde e\tilde e \to {e^{-} }\tilde \chi_1^0{e^{-} }\tilde \chi_2^0 \) decay channel, hep-ph/0312140 [SPIRES].

  31. S.Y. Choi, B.C. Chung, J. Kalinowski, Y.G. Kim and K. Rolbiecki, Analysis of the neutralino system in three-body leptonic decays of neutralinos, Eur. Phys. J. C 46 (2006) 511 [hep-ph/0504122] [SPIRES].

    Article  ADS  Google Scholar 

  32. A. Bartl, H. Fraas, S. Hesselbach, K. Hohenwarter-Sodek and G.A. Moortgat-Pick, A T-odd asymmetry in neutralino production and decay, JHEP 08 (2004) 038 [hep-ph/0406190] [SPIRES].

    Article  ADS  Google Scholar 

  33. D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, CP violation in top physics, Phys. Rept. 347 (2001) 1 [hep-ph/0006032] [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Bartl, T. Kernreiter and W. Porod, A CP sensitive asymmetry in the three-body decay stop 1 + τ-sneutrino, Phys. Lett. B 538 (2002) 59 [hep-ph/0202198] [SPIRES].

    ADS  Google Scholar 

  35. A. Bartl, H. Fraas, T. Kernreiter and O. Kittel, T-odd correlations in the decay of scalar fermions, Eur. Phys. J. C 33 (2004) 433 [hep-ph/0306304] [SPIRES].

    ADS  Google Scholar 

  36. A. Bartl et al., CP asymmetries in chargino production and decay: the three-body decay case, Eur. Phys. J. C 51 (2007) 149 [hep-ph/0608065] [SPIRES].

    Article  ADS  Google Scholar 

  37. M.M. Nojiri, G. Polesello and D.R. Tovey, Proposal for a new reconstruction technique for SUSY processes at the LHC, hep-ph/0312317 [SPIRES].

  38. M.M. Nojiri, G. Polesello and D.R. Tovey, A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays, JHEP 05 (2008) 014 [arXiv:0712.2718] [SPIRES].

    Article  ADS  Google Scholar 

  39. H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy, Phys. Rev. Lett. 100 (2008) 252001 [arXiv:0802.4290] [SPIRES].

    Article  ADS  Google Scholar 

  40. H.-C. Cheng, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy: II, Phys. Rev. D 80 (2009) 035020 [arXiv:0905.1344] [SPIRES].

    Google Scholar 

  41. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Bahr et al., HERWIG++ 2.2 release note, arXiv:0804.3053 [SPIRES].

  43. G.A. Moortgat-Pick, H. Fraas, A. Bartl and W. Majerotto, Polarization and spin effects in neutralino production and decay, Eur. Phys. J. C 9 (1999) 521 [hep-ph/9903220] [SPIRES].

    ADS  Google Scholar 

  44. H.E. Haber, Spin formalism and applications to new physics searches, hep-ph/9405376 [SPIRES].

  45. H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella and B. McElrath, Mass determination in SUSY-like events with missing energy, JHEP 12 (2007) 076 [arXiv:0707.0030] [SPIRES].

    Article  ADS  Google Scholar 

  46. K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev. D 71 (2005) 035008 [hep-ph/0410160] [SPIRES].

    ADS  Google Scholar 

  47. ATLAS Collaboration, ATLAS detector and physics performance. Technical design report. Vol. 2, CERN-LHCC-99-15 [SPIRES].

  48. P. Bechtle, B. Gosdzik, G. Moortgat-Pick, K. Rolbiecki, J. Tattersall and P. Wienemann, in preparation.

  49. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].

    Article  ADS  Google Scholar 

  50. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [SPIRES].

    ADS  Google Scholar 

  51. LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [SPIRES].

    Article  ADS  Google Scholar 

  52. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].

    Article  ADS  Google Scholar 

  53. N. Kersting, A simple mass reconstruction technique for SUSY particles at the LHC, Phys. Rev. D 79 (2009) 095018 [arXiv:0901.2765] [SPIRES].

    ADS  Google Scholar 

  54. Z. Kang, N. Kersting, S. Kraml, A.R. Raklev and M.J. White, Neutralino reconstruction at the LHC from decay-frame kinematics, arXiv:0908.1550 [SPIRES].

  55. K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki and W.J. Stirling, Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions, JHEP 12 (2006) 007 [hep-ph/0607104] [SPIRES].

    Article  ADS  Google Scholar 

  56. ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [SPIRES].

    Google Scholar 

  57. A. Bartl et al., CP-odd observables in neutralino production with transverse e + and e beam polarization, JHEP 01 (2006) 170 [hep-ph/0510029] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Moortgat-Pick.

Additional information

ArXiv ePrint: 0908.2631

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moortgat-Pick, G., Rolbiecki, K., Tattersall, J. et al. Probing CP violation with and without momentum reconstruction at the LHC. J. High Energ. Phys. 2010, 4 (2010). https://doi.org/10.1007/JHEP01(2010)004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)004

Keywords

Navigation