Skip to main content
Log in

A distributed dislocation stress analysis for crazes and plastic zones at crack tips

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A distributed dislocation method is developed to obtain analytically the applied stress as well as the surface stress profile along narrow plastic zones at the tip of a crack in a homogeneous tensile stress field. Replacing the plastic zone by a continuous array of mathematical dislocations, the stress field solution of this mixed boundary value problem (the displacement profile of the plastic zone is fixed while the tensile stresses are zero across the crack) can be solved. A computer program based on this stress field solution has been constructed and tested using the analytical results of the Dugdale model. The method is then applied to determining the surface stress profiles of crazes and plane-stress plastic deformation zones grown from electron microprobe cracks in polystyrene and polycarbonate respectively. The necessary craze and zone surface displacement profiles are determined by quantitative analysis of transmission electron micrographs. The surface stress profiles, which show small stress concentrations at the craze or zone tip falling to an approximately constant value which is maintained to the crack tip, are compared with those previously computed using an approximate Fourier transform method involving estimation of the displacement profile in the crack. The agreement between the approximate method and the exact distributed dislocation method is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. McClintock and G. R. Irwin, “Fracture Toughness Testing”, ASTM STP 381, (1965) 84.

  2. G. T. Hahn, M. F. Kanninen and A. R. Rosenfield, Ann. Revs. Mater. Sci. 2 (1972) 381.

    Google Scholar 

  3. L. N. Mareal, P. V. Ostergren and W. J. Rice, Jr., Int. J. Fact. Mech. 7 (1971) 143.

    Google Scholar 

  4. G. T. Hahn and A. R. Rosenfield, Acta Metall. 13 (1965) 293.

    Google Scholar 

  5. D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.

    Google Scholar 

  6. H. R. Brown and I. M. Ward, Polymer 14 (1973) 469.

    Google Scholar 

  7. R. Ferguson, G. P. Marshall and J. G. Williams, ibid. 14 (1973) 451.

    Google Scholar 

  8. B. D. Lauterwasser and E. J. Kramer, Phil. Mag. A39 (1979) 469.

    Google Scholar 

  9. A. M. Donald and E. J. Kramer, J. Mater. Sci. in press.

  10. G. I. Barenblatt, J. Appl. Math. 23 (1959) 622.

    Google Scholar 

  11. B. A. Bilby, A. H. Cottrell and K. H. Swinden, Proc. Roy. Soc. A272 (1963) 304.

    Google Scholar 

  12. J. N. Goodier and F. A. Field, Proceedings of the International Conference on Fracture of Solids, edited by D. C. Drucker and J. J. Gilman, Met. Soc. Conferences, Vol. 20, (Interscience Publishers, New York, 1963) p. 103.

    Google Scholar 

  13. A. C. Knight, J. Polymer Sci. A3 (1965) 1845.

    Google Scholar 

  14. N. Verheulpen-Heymans and J. C. Bauwens, J. Mater. Sci. 11 (1976) 7.

    Google Scholar 

  15. A. P. Wilczynski, C. H. Liu and C. C. Hsiao, Appl. Phys. 48 (1977) 1149.

    Google Scholar 

  16. N. J. Mills, J. Mater. Sci. 16 (1981) 1317.

    Google Scholar 

  17. G. P. Morgan and I. M. Ward, Polymer 18 (1977) 87.

    Google Scholar 

  18. M. J. Doyle and J. G. Wagner, in Proceedings of the ACS Symposium on Toughness and Brittleness of Plastics, Sept. 1974, edited by R. D. Denim and A. D. Crugnola, Advances in Chemistry series 154 (American Chemical Society) p. 63.

  19. S. T. Israel, E. L. Thomas and W. W. Gerberich, J. Mater. Sci. 14 (1979) 2128.

    Google Scholar 

  20. B. A. Bilby and J. D. Eshelby, in “Fracture”, Vol. 1, edited by H. Liebowitz (Academic Press, NY, 1972) Chap. II, p. 111.

    Google Scholar 

  21. J. D. Eshelby, in “Fracture Toughness”, ISI Publication 121 (The Iron and Steel Institute, London, 1968) Chap. II, p. 55.

    Google Scholar 

  22. E. W. Hart, Private Communication (1980).

  23. T. Chan, A. W. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 679.

    Google Scholar 

  24. I. N. Sneddon, “Fourier Transforms”, (McGraw-Hill, New York, 1951) pp. 395–430.

    Google Scholar 

  25. A. M. Donald and E. J. Kramer, J. Polymer Sci., Polymer Phys. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WC.V., Kramer, E.J. A distributed dislocation stress analysis for crazes and plastic zones at crack tips. J Mater Sci 17, 2013–2026 (1982). https://doi.org/10.1007/BF00540419

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540419

Keywords

Navigation