Skip to main content
Log in

Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Cytogenetical investigations, so far, on the organisation and evolution of the genomes of Vigna species have proved difficult due to small chromosome size, large chromosome number and uniformity in chromosome shape and size within and between the complements. In this investigation the nature and extent of DNA variation between thirteen diploid and one polyploid species have been estimated. The DNA variation between diploid species was small and species clustered around a mean value of 2.7 pg. The polyploid species had a greater DNA value of 4.95 pg. No significant variation in 2C DNA content was found between accessions of V. radiata. A comparison of the distribution of DNA among the chromosomes within complements has shown that the excess DNA acquired in evolution was distributed evenly in all chromosomes despite significant differences in chromosome size. The relative changes in chromatin area and DNA density which accompany evolutionary DNA variation was also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, C. S. & Hartmann, R. W., 1978. Interspecific hybridization among four species of the genus Vigna Savi. In: Int. Mungbean Symp. I. Asian Vegetable Res. and Dev. Center, Taiwan: pp. 240–246.

    Google Scholar 

  • Ayonoadu, U. W. U., 1974. Nuclear DNA variation in Phaseolus. Chromosoma 48: 41–49.

    Google Scholar 

  • Bajaj, Y. P. S. & Gosal, S. S., 1982. Induction of genetic variability in grain legumes through tissue culture. In: A. N.Rao (ed.), Tissue Culture of Economically Important Plants. National Univ, Singapore: pp. 25–41.

    Google Scholar 

  • Baudoin, J. P. & Marechal, R., 1988. Taxonomy and evolution in genus Vigna, In: Int. Mung bean Symp. II. Asian vegetable Res. and Dev. Center. Taiwan pp. 1–12.

    Google Scholar 

  • Biswas, M. R. & Dana, S., 1975. Blackgram x Rice bean cross. Cytologia 40: 787–795.

    Google Scholar 

  • Chowdhury, R. K. & Chowdhury, J. B., 1974. Induced amphidiploidy in Phaseolus aureus Roxb. x P. mungo L. hybrids. Crop Improvement 1: 46–52.

    Google Scholar 

  • Dana, S., 1966a. Cross between Phaseolus aureus Roxb. and P. mungo L. Genetica 37: 259–274.

    Google Scholar 

  • Dana, S., 1966b. Species cross between Phaseolus aureus Roxb. and P. trilobus Ait. Cytologia 31: 176–187.

    Google Scholar 

  • Dana, S., 1966c. Interspecific hybrid between Phaseolus mungo L. and P. trilobus Ait. J. Cytol. Genet. 1: 61–66.

    Google Scholar 

  • Darlington, C. D., 1963. Chromosome Botany and the origin of cultivated plants. George Allen & Unwin Ltd., London.

    Google Scholar 

  • Darlington, C. D. & Wylie, A. P., 1955. Chromosome Atlas of Flowering Plants. George Allen and Unwin Ltd., London.

    Google Scholar 

  • Dowrick, G. J., 1952. Chromosomes of Chrysanthemum I. The species. Heredity 6: 365–375.

    Google Scholar 

  • Froni-Martins, E. R., 1986. New Chromosome number in the genus Vigna Savi (Leguminosae-Papilionoideae). Bull. Jardin Bot. nat. Belgique. 56: 129–133.

    Google Scholar 

  • Gopinathan, M. C. & Babu, C. R., 1986. Meiotic studies of the F1 hybrids between rice bean (Vigna umbellata) and its wild relative (V. minima). Genetica 71: 115–117.

    Google Scholar 

  • Gosal, S. S. & Bajaj, Y. P. S., 1983. Interspecific hybridization between Vigna mungo and V. radiata through embryo culture. Euphytica 32: 129–137.

    Google Scholar 

  • Gupta, P. K. & Behl, G. R., 1982. Cytogenetics and origin of some crop plants. In: M. S.Swaminathan, P. K.Gupta and U.Sinha (eds), Cytogenetics of Crop Plants. McMillan India Co., Delhi. pp. 405–440.

    Google Scholar 

  • Ignichimuthu, S. & Babu, C. R., 1988. Nuclear DNA and RNA amount in wild and cultivated Urd and Mung beans and their M1 plants. Cytologia 53: 535–541.

    Google Scholar 

  • Jain, H. K. & Mehra, K. L., 1980. Evolution, adaptation, relationship and use of the species Vigna, cultivated in India. In: R. J.Summerfields & A. H.Bunting (eds), Advances in Legume Science. Royal Botanical Garden, Kew, pp. 459–468.

    Google Scholar 

  • Kumar, V. & Subramaniam, B., 1986. Chromosome Atlas of Flowering Plants of the Indian Subeontinent, Vol. I. Dicotyledons. Botanical Survey of India.

  • Marechal, R., Mascherpa, J. M. & Stainler, F., 1978. Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae). Sur le base de données morphologiques et polliniques traitées par l'analyse informatique. Boissiera 28: 1–273.

    Google Scholar 

  • Mok, D. W. S., Mok, M. C., Rabakoarihanta, A. & Shii, C. T., 1986. Phaseolus: Wide hybridization through embryo culture. In: Y. P. S.Bajai (ed.), Biotechnology in Agriculture and Forestry, Vol. 2, Springer, Berlin. pp. 309–318.

    Google Scholar 

  • Nagl, W., 1979. Nuclear ultrastructure: Condensed chromatin in plant is species specific (Karyotypical), but not tissue specific (functional). Protoplasma 100: 53–71.

    Google Scholar 

  • Nagl, W., 1982. Condensed chromatin: species specificity, tissue specificity, and cell cycle specificity, as monitored by seanning cytometry. In: Cell Growth. Plenum Press, New York, pp. 171–278.

    Google Scholar 

  • Nagl, W. & Fusenig, H. P., 1979. Types of chromatin organisation in plant nuclei. Pl. Syst. Evol. (Suppl) 2: 221–233.

    Google Scholar 

  • Narayan, R. K. J., 1982. Discontinuous DNA variation in the evolution of plant species. The genus Lathyrus. Evolution 36: 877–891.

    Google Scholar 

  • Narayan, R. K. J., 1985. Discontinuous DNA variation in the evolution of plant species. J. Genet. 64: 101–109.

    Google Scholar 

  • Narayan, R. K. J., 1987. Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Pl. Syst. Evol. 157: 161–180.

    Google Scholar 

  • Narayan, R. K. J., 1988a. Constraints upon the organisation and evolution of chromosomes in Allium. Theor. appl. Genet. 75: 319–329.

    Google Scholar 

  • Narayan, R. K. J., 1988b. Evolutionary significance of DNA variation in plants. Evol. Trends in Plants 2: 121–130.

    Google Scholar 

  • Narayan, R. K. J. & Durrant, A., 1983. DNA distribution in chromosomes of Lathyrus species. Genetica 61: 47–53.

    Google Scholar 

  • Rabakoarihanta, A., Mok, D. W. S. & Mok, M. C., 1979. Fertilization and early embryo development in reciprocal interspecific crosses of Phaseolus. Theor. appl. Genet. 54: 55–59.

    Google Scholar 

  • Raina, S. N., 1989. Genome organisation and evolution in the genus Vicia. In: Biological Approaches and Evolutionary Trends in Plants. Academic Press, London (In Press).

    Google Scholar 

  • Raina, S. N. & Bisht, M. S., 1988. DNA amounts and chromatin compactness in Vicia. Genetical 77: 65–77.

    Google Scholar 

  • Raina, S. N. & Rees, H., 1983a. DNA variation between and within chromosome complements of Vicia species. Heredity 51: 335–346.

    Google Scholar 

  • Raina, S. N. & Rees, H., 1983b. Variation in chromosomal DNA associated with evolution of Vicia species. Kew Chromosome Conference 2. Allen & Unwin, London: pp. 360.

    Google Scholar 

  • Raina, S. N., Keshavacharyulu, K. & Parida, A., 1988. Constancy pattern of variation in the DNA distribution within Vicia genome complements. In: Proc. Int. Conf. Research in Plant Sciences and its relevance to future, New Delhi: pp. 199.

  • Raina, S. N., Srivastava, P. K. & Rama Rao, S., 1986. Nuclear DNA variation in Tephrosia. Genetica 69: 27–33.

    Google Scholar 

  • Rees, H. & Narayan, R. K. J., 1977. Evolutionary DNA variation in Lathyrus. Chromosomes Today 6: 131–139.

    Google Scholar 

  • Subramanian, D., 1980. Interspecific hybridization in Vigna. Ind. J. Genet. 40: 437–438.

    Google Scholar 

  • Teoh, S. B. & Rees, H., 1976. Nuclear DNA amounts in populations of Picea and Pinus species. Heredity 36: 123–137.

    Google Scholar 

  • Thompson, W. F. & Murray, M. G., 1980. Sequence organisation in Pea and Mung bean DNA and a model for genome evolution: In: D. R.Davis & D. A.Hopwood (eds), Plant Genome. The John Innes Charity, England. pp. 31–45.

    Google Scholar 

  • Van't Hoff, J., 1965. Relationship between mitotie cycle duration, S-period duration and the average rate of DNA synthesis in root meristems of several plants. Expl Cell Res. 39: 48–58.

    Google Scholar 

  • Ved Brat, S., 1965. Genetic systems in Allium I. Chromosome variation. Chromosoma 16: 486–499.

    Google Scholar 

  • Verdeourt, B., 1970. Studies in the Leguminosae-Papilionoideae for the ‘Flora of Tropical East Africa’: IV. Kew Bulletin 24: 507–570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parida, A., Raina, S.N. & Narayan, R.K.J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990). https://doi.org/10.1007/BF00124642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124642

Keywords

Navigation