Skip to main content
Log in

Physiology of aliphatic hydrocarbon-degrading microorganisms

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This paper reviews aspects of the physiology and biochemistry of the microbial biodegradation of alkanes larger than methane, alkenes and alkynes with particular emphasis upon recent developments. Subject areas discussed include: substrate uptake; metabolic pathways for alkenes and straight and branched-chain alkanes; the genetics and regulation of pathways; co-oxidation of aliphatic hydrocarbons; the potential for anaerobic aliphatic hydrocarbon degradation; the potential deployment of aliphatic hydrocarbon-degrading microorganisms in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180–209

    Google Scholar 

  • Bassel, JB & Mortimer, RK (1985) Identification of mutations preventing n-hexadecane uptake among 26 n-alkane nonutilizing mutants of Yarrowia (Saccharomycopsis) lipolytica. Curr Genet 9: 579–586

    Google Scholar 

  • Benson, S, Fennewald, M, Shapiro, J & Huettner, C (1977) Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations. J Bacteriol 132: 614–621

    Google Scholar 

  • Bertrand, JC, Caumette, P, Mille, G, Gilewicz, M & Denis, M (1989) Anaerobic biodegradation of hydrocarbons. Sci Prog 73: 333–350

    Google Scholar 

  • Blasig, R, Mauersberger, S, Riege, P, Schunck, W-H, Jockisch, W, Franke, P & Muller, H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa. II. Oxidation of n-alkanes and intermediates using microsomal membrane fractions. Appl Microbiol Biotechnol 28: 589–597

    Google Scholar 

  • Blasig, R, Huth, J, Franke, P, Borneleit, P, Schunck, W-H & Muller, H-G (1989) Degradation of long-chain n-alkanes by the yeast Candida maltosa. III. Effect of solid n-alkanes on cellular fatty acid composition. Appl Microbiol Biotechnol 31: 571–576

    Google Scholar 

  • de Bont, JAM, Primrose, SB, Collins, MD & Jones, D (1980) Chemical studies on some bacteria which utilise gaseous unsaturated hydrocarbons. J Gen Microbiol 117: 97–102

    Google Scholar 

  • Britton, LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson, DT (Ed) Microbial Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New York

    Google Scholar 

  • Cerniglia, CE, Blevins, WT & Perry, JJ (1976) Microbial oxidation and assimilation of propylene. Appl Environ Microbiol 32: 764–768

    Google Scholar 

  • Chakrabarty, AM, Chou, G & Gunsalus, IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA 70: 1137–1140

    Google Scholar 

  • Cox, RE, Maxwell, JR & Myers, RN (1976) Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum. Lipids 11: 72–76

    Google Scholar 

  • Eastcott, L, Shiu, WY & Mackay, D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4: 191–216

    Google Scholar 

  • Eggink, G, Engel, H, Meijer, WG, Otten, J, Kingma, J & Witholt, B (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263: 13400–13405

    Google Scholar 

  • Eggink, G, Lageveen, RG, Altenburg, B & Witholt, B (1987a) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262: 17712–17718

    Google Scholar 

  • Eggink, G, van Lelyveld, PH, Arnberg, A, Arfman, N, Witteveen, C & Witholt, B (1987b) Structure of the Pseudomonas putida alkBAC operon. Identification of transcription and translation products. J Biol Chem 262: 6400–6406

    Google Scholar 

  • Fennewald, M, Benson, S, Oppici, M & Shapiro, J (1979) Insertion element analysis and mapping of the Pseudomonas plasmid alk region. J Bacteriol 139: 940–952

    Google Scholar 

  • Fennewald, M & Shapiro, J (1977) Regulatory mutations of the Pseudomonas plasmid alk regulon. J Bacteriol 132: 622–627

    Google Scholar 

  • Fennewald, M & Shapiro, J (1979) Transposition of Tn7 in Pseuomonas aeruginosa and isolation of alk:: Tn7 mutations. J Bacteriol 139: 264–269

    Google Scholar 

  • Finnerty, WR (1984) The application of hydrocarbon-utilizing microorganisms for lipid production. AOCS Monogr 11: 199–215

    Google Scholar 

  • Finnerty, WR & Singer, ME (1985) Membranes of hydrocarbonutilizing microorganisms. In: Ghosh, BK (Ed) Organisation of Prokaryotic Cell Membranes, Volume III (pp 1–44). CRC Press, Boca Raton, Florida

    Google Scholar 

  • Fukui, S & Tanaka, A (1979) Peroxisimes of alkane- and methanol-grown yeasts: metabolic functions and practical applications. J Appl Biochem 1: 171–201

    Google Scholar 

  • van Ginkel, CG & de Bont, JAM (1986) Isolation and characterization of alkene-utilizing Xanthobacter spp. Arch Microbiol 145: 403–407

    Google Scholar 

  • van Ginkel CG, Welten HGJ & de Bont JAM (1987) Oxidation of gaseous and volatile hydrocarbons by selected alkeneutilizing bacteria. Appl Environ Microbiol: 2903–2907

  • Grund, A, Shapiro, J, Fennewald, M, Bacha, P, Leahy, J, Markbreiter, K, Nieder, M & Toepfer, M (1975) Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123: 546–556

    Google Scholar 

  • Hartmans, S, de Bont, JAM & Harder, W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Rev 63: 235–264

    Google Scholar 

  • Hommel, R & Kleber, H-P (1984) Oxidation of long-chain alkanes by Acetobacter rancens. Appl Microbiol Biotechnol 19: 110–113

    Google Scholar 

  • Hommel, R & Ratledge, C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol Lett 70: 183–186

    Google Scholar 

  • Kappeli, O & Finnerty, WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140: 707–712

    Google Scholar 

  • Kemp, GD, Dickinson, FM & Ratledge, C (1988) Inducible long chain alcohol oxidase from alkane-grown Candida tropicalis. Appl Microbiol Biotechnol 29: 370–374

    Google Scholar 

  • Kennicutt, MC (1988) The effect of biodegradation on crude oil bulk and molecular composition. Oil Chem Pollut 4: 89–112

    Google Scholar 

  • Kirk, PW & Gordon, AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80: 776–782

    Google Scholar 

  • Kok, M, Oldenhuis, R, van der Linden, MPG, Raatjes, P, Kingma, J, van Lelyveld, PH & Witholt, B (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264: 5435–5441

    Google Scholar 

  • Lageveen, RG, Huisman, GW, Preusting, H, Ketelaar, P, Eggink, G & Witholt, B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54: 2924–2932

    Google Scholar 

  • Lindley, ND, Pedley, JF, Kay, SP & Heydeman, M.T. (1986) The metabolism of yeasts and filamentous fungi which degrade hydrocarbon fuels. Int Biodet 22: 281–287

    Google Scholar 

  • McKenna, EJ & Kallio, RE (1971) Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci USA 68: 1552–1554

    Google Scholar 

  • Miall, LM (1980) Organic acid production from hydrocarbons. In: Harrison, DEF, Higgins, IJ & Watkinson, RJ (Eds) Hydrocarbons in Biotechnology (pp 25–34). Heyden, London

    Google Scholar 

  • Mille, G, Mulyono, M, El Jammel, T & Bertrand, J-C (1988) Effects of oxygen on hydrocarbon degradation studies in vitro in surficial sediments. Estuarine Coastal Shelf Sci 27: 283–295

    Google Scholar 

  • Miller, RM & Bartha, R (1989) Evidence for liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl Environ Microbiol 55: 269–274

    Google Scholar 

  • Morgan, P & Watkinson, RJ (1989a) Hydrocarbon degradation in soils and methods for soil biotreatment. CRC Crit Rev Biotechnol 8: 305–333

    Google Scholar 

  • Morgan, P & Watkonson, RJ (1989b) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol Rev 63: 277–300

    Google Scholar 

  • Nakajima, K & Sato, A (1983) Microbial metabolism of isoprenoid alkane pristane. Nippon Nogeikugaku Kaishi 57: 299–305

    Google Scholar 

  • Nakajima, K, Sato, A, Takahara, Y & Iida, T (1985) Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane. Agric Biol Chem 49: 1493–2002

    Google Scholar 

  • Nakajima, K, Sato, A, Takahara, Y & Iida, T (1985) Microbial oxidation of isoprenoid alkanes phytane, norpristane and farnesane. Agric Biol Chem 49: 1993–2002

    Google Scholar 

  • Ng, TK & Hu, WS (1989) Adherence of emulsan-producing Acinetobacter calcoaceticus to hydrophobic liquids. Appl Microbiol Biotechnol 31: 480–485

    Google Scholar 

  • Nieder, M & Shapiro, J (1975) Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J Bacteriol 122: 93–98

    Google Scholar 

  • Oudot, J, Ambles, A, Bourgeouis, S, Gatellier, C & Sebyera, N (1989) Hydrocarbon infiltration and biodegradation in a landfarming experiment. Environ Pollut 59: 17–40

    Google Scholar 

  • Owen, DJ (1986) Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Mol Gen Genet 203: 64–72

    Google Scholar 

  • Pfaender, FK & Buckley, EN (1984) Effects of petroleum on microbial communities. In: Atlas, RM (Ed) Petroleum Microbiology (pp 507–536). Macmillan, New York

    Google Scholar 

  • Pirnik, M.P. (1977) Microbial oxidation of methyl branched alkanes. CRC Crit Rev Microbiol 5: 413–422

    Google Scholar 

  • Pirnik, MP, Atlas, RM & Bartha, R (1974) Hydrocarbon metabolism by Brevibacterium erthrogenes: normal and branched alkanes. J Bacteriol 119: 868–878

    Google Scholar 

  • Ratledge, C (1978) Degradation of aliphatic hydrocarbons. In: Watkinson, RJ (Ed) Developments in Biodegradation of Hydrocarbons (pp 1–46). Applied Science, London

    Google Scholar 

  • Ratledge, C (1984) Microbial conversions of alkanes and fatty acids. J Am Oil Chem Soc 61: 447–453

    Google Scholar 

  • Rehm, HJ, Hortmann, L & Reiff, I (1983) Regulation der fettsaurebildung bei der mikrobiellen alkanoxidation. Acta Biotechnol 3: 279–288

    Google Scholar 

  • Rehm, HJ & Reiff, I (1982) Regulation der mikrobiellen alkanoxidation mit hinblick auf die produktbildung. Acta Biotechnol 2: 127–138

    Google Scholar 

  • Rontani, JF & Giusti, G (1986) Study of the biodegradation of poly-branched alkanes by a marine bacterial community. Mar Chem 20: 197–205

    Google Scholar 

  • Sanglard, D, Chen, C & Loper, JC (1987) Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochem Biophys Res Comm 144: 251–257

    Google Scholar 

  • Sanglard, D & Fiechter, A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256: 128–134

    Google Scholar 

  • Sanglard, D & Loper, JC (1989) Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136

    Google Scholar 

  • Schink, B (1985a) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Ecol 31: 69–77

    Google Scholar 

  • Schink, B (1985b) Fermentation of acetylene by an obligate anaerobe Pelobacter acetylenicus sp. nov.. Arch Microbiol 142: 295–301

    Google Scholar 

  • Schink, B (1989) Anaerober abbau von Kohlenwasserstoffen. Erdol Kohle Erdgas 42: 116–118

    Google Scholar 

  • Schunck, W-H, Kargel, E, Gross, B, Wiedmann, B, Mauersberger, S, Kopke, K, Kiessling, U, Strauss, M, Gaestel, M & Muller, H-G (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Comm 161: 843–850

    Google Scholar 

  • Scott, CCL & Finnerty, WR (1976a) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 94: 342–350

    Google Scholar 

  • Scott, CCL & Finnerty, WR (1976b) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter sp. HO1-N. J Bacteriol 127: 481–489

    Google Scholar 

  • Shennan, JL (1984) Hydrocarbons as substrates in industrial fermentations. In: Atlas, RM (Ed) Petroleum Microbiology (pp 643–683). Macmillan, New York

    Google Scholar 

  • Singer, ME & Finnerty, WR (1984a) Microbial metabolism of straight-chain and branched alkanes. In: Atlas, RM (Ed) Petroleum Microbiology (pp 1–59). Macmillan, New York

    Google Scholar 

  • Singer, ME & Finnerty, WR (1984b) Genetics of hydrocarbon-utilizing microorganisms. In: Atlas, RM (Ed) Petroleum Microbiology (pp 299–354). Macmillan, New York

    Google Scholar 

  • de Smet, M-J, Kingma, J, Wijnberg, H & Witholt, B (1983a) Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: growth, morphology and conversion characteristics in different two-phase systems. Enzyme Microb Technol 5: 352–360

    Google Scholar 

  • de Smet, M-J, Eggink, G, Witholt, B, Kingma, J & Wijnberg, H (1983b) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154: 870–878

    Google Scholar 

  • Sunairi, M, Suzuki, R, Takagi, M & Yano, K (1988) Self-cloning of genes for n-alkane assimilation from Candida maltosa. Agric Biol Chem 52: 577–579

    Google Scholar 

  • Takagi, M, Ohkuma, M, Kobayashi, N, Watanabe, M & Yano, J (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa and cloning and nucleotide sequencing of the encoding gene. Agric Biol Chem 53: 2217–2226

    Google Scholar 

  • de Vries, GM, Kues, U & Stahl, U (1990) Physiology and genetics of methylotrophic bacteria. FEMS Microbiol Rev 75: 57–101

    Google Scholar 

  • Wakeham, SG, Canuel, EA & Doering, PH (1986) Behavior of aliphatic hydrocarbons in coastal seawater: mesocosm experiments with [14C]octadecane and [14C]decane. Environ Sci Technol 20: 574–580

    Google Scholar 

  • Watkinson, RJ (1980) Interaction of microorganisms with hydrocarbons. In: Harrison, DEF, Higgins, IJ & Watkinson, RJ (Eds) Hydrocarbons in Biotechnology (pp 11–24). Heyden, London

    Google Scholar 

  • Weijers, CGAM, van Ginkel, CG & de Bont, JAM (1988a) Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria. Enzyme Microb Technol 10: 214–218

    Google Scholar 

  • Weijers, CGAM, Leenen, EJTM, Klijn, N & de Bont, JAM (1988b) Microbial formation of chiral epoxyalkanes. Med Fac Landbouww Rijksuniv Gent 53: 2089–2095

    Google Scholar 

  • Weijers, CGAM, de Haan, A & de Bont, JAM (1988c) Microbial production and metabolism of epoxides. Microbiol Sci 5: 156–159

    Google Scholar 

  • Witholt, B, de Smet, M-J, Kingma, J, van Beilen, JB, Kok, M, Lageveen, RG & Eggink, G (1990) Bioconversions of aliphatic hydrocarbons by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnl 8: 46–52

    Google Scholar 

  • Woods, NR & Murrell, JC (1989) The metabolism of propane in Rhodococcus rhodochrous PNKb1. J Gen Microbiol 135: 2335–2344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watkinson, R.J., Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1, 79–92 (1990). https://doi.org/10.1007/BF00058828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058828

Key words

Navigation