Skip to main content
Log in

The influence of animals on phosphorus cycling in lake ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic animals directly influence the cycling of phosphorus in lakes through feeding and excretion. Traditionally, animals (zooplankton, benthic invertebrates and fish) have been assigned only minor roles in the process of freshwater phosphorus cycling. They were regarded as consumers without much regulating influence. Today there is growing evidence that animals, predators and herbivores, directly or indirectly can control biomass of primary producers and internal cycling of phosphorus.

This paper summarizes different mechanisms of transformation and translocation of phosphorus via different groups of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, D. J., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.

    Google Scholar 

  • Aller, R. C., 1978. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. Am. J. Sci. 278: 1185–1234.

    Google Scholar 

  • Aller, R. C., 1980. Relationships of tube-dwelling benthos with sediment and overlying water chemistry. In K. R. Tenore & B. C. Coull (eds.), Marine benthic dynamics. Univ. South Carolina Press: 285–308.

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In P. L. mcCall & M. J. S. Tevesz (eds.), Animal-sediment relations: The biogenic alteration of sediments. Plenum Press, NY: 53–102.

    Google Scholar 

  • Alsterberg, G., 1924. Die Nahrungszirkulation einiger Binnenseetypen. Arch. Hydrobiol. 15: 291–338.

    Google Scholar 

  • Andersen, J. M., 1975. Influence of pH on the release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411–419.

    Google Scholar 

  • Andersen, J. M., 1977. Importance of the denitrification process for the rate of degradation of organic matter in lake sediments. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr. W. Junk, The Hague: 357–362.

    Google Scholar 

  • Andersson, G., 1984. The role of fish in lake ecosystems and in limnology. In S. Bosheim & M. Nicholls (eds.), Interaktioner mellom trofiske nivåer i ferskvann. Norsk Limnologförening. Oslo: 189–197.

    Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Google Scholar 

  • Barlow, J. P. & L. W. Bishop, 1965. Phosphate regeneration by zooplankton in Cayuga lake. Limnol. Oceanogr. 10 (suppl.): 15–24.

    Google Scholar 

  • Bartell, S. M. & J. F. Kitchell, 1978. Seasonal impact of planktivory on phosphorus release by Lake Wingra zooplankton. Verh. int. Verein. Limnol. 20: 466–475.

    Google Scholar 

  • Berman, M. & S. Richman, 1974. The feeding behavior of Daphnia pulex from Lake Winnebago, Wisconsin. Limnol. Oceanogr. 19: 105–109.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Boström, B., 1984. Potential mobility of phosphorus in different types of lake sediments. Int Revue ges. Hydrobiol. 69: 457–474.

    Google Scholar 

  • Brabrand, Å., B. Faafeng, T. Källquist & J. P. Nilsson, 1984. Can iron defecation from fish influence phytoplankton production and biomass in eutrophic lakes? Limnol. Oceanogr. 29: 1330–1334.

    Google Scholar 

  • Brabrand, Å. B. Faafeng & J. P. Nilsson, 1982. Prosjekt Produksjonsforhold i eutrofierte systemer. In In H. Reinertsen, G. Knutsen & M. Heldal (eds.), NTNF's Program eutrofieringsforskning — slutrapport fase I, 1978–82. Norges Teknisk-Naturvetenskapelige Forskningsråd Trondheim: 14–18.

    Google Scholar 

  • Canfield, F. E. Jr., K. A. Langeland, M. J. Maceina, W. T. Haller & J. V. Shireman, 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. aquat. Sci. 40: 1713–1718.

    Google Scholar 

  • Carpenter, R. S., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Davis, R. B., 1974a. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • Davis, R. B., 1974b. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr. 19: 342–346.

    Google Scholar 

  • Davis, R. B., D. L. Thurlow & F. E. Brewster, 1975. Effects of burrowing tubificid worms on the exchange of phosphorus between lake sediment and overlying water. Verh. int. Verein. Limnol. 19: 382–394.

    Google Scholar 

  • Edwards, R. W., 1958. The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge. Ann. appl. Biol. 46: 457–464.

    Google Scholar 

  • Edwards, R. W. & H. L. J. Rolley, 1965. Oxygen consumption of river muds. J. Ecol. 53: 1–19.

    Google Scholar 

  • Esjmont-Karabin, J. 1984. Phosphorus and nitrogen excretion by lake zooplankton (Rotifers and Crustaceans) in relationship to individual body weights of the animals, ambient temperature and presence or absence of food. Ekol. pol. 32: 3–42.

    Google Scholar 

  • Fenchel, T., 1974. Intrinsic rate of increase: the relationship with body size. Oecologia 14: 317–326.

    Google Scholar 

  • Ferrante, J. G., 1976. The role of zooplankton in the intrabiocoenotic phosphorus cycle and factors affecting phosphorus excretion in a lake. Hydrobiologia 49: 203–214.

    Google Scholar 

  • Ferrante, J. G. & J. I. Parker, 1977. Transport of diatom frustrules by copepod fecal pellets to the sediments of Lake Michigan. Limnol. Oceanogr. 22: 92–98.

    Google Scholar 

  • Fry, J. C., 1982. Interactions between bacteria and benthic invertebrates. In D. B. Nedwell & C. M. Brown (eds.), Sediment microbiology, Academic Press, Lond: 171–201.

    Google Scholar 

  • Gallepp, G. W., J. F. Kitchell & S. M. Bartell, 1978. Phosphorus release from the lake sediments as affected by chironomids. Verh. int. Verein. Limnol. 20: 458–465.

    Google Scholar 

  • Gallepp, G. W., 1979. Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60: 547–556.

    Google Scholar 

  • Gardner, W. S., T. F. Nalepa, M. A. Quigley & J. M. Malczyk, 1981. Release of phosphorus by certain benthic invertebrates. Can. J. Fish. aquat. Sci. 38: 978–981.

    Google Scholar 

  • Goldspink, C. R., & D. B. C. Scott, 1971. Vertical migration of Chaoborus flavicans in a Scottish loch. Freshwat. Biol. 1: 411–421.

    Google Scholar 

  • Golley, F. B., 1973. Impact of small mammals on primary production, In J. A. Gessaman (ed.) Ecological energetics of homeotherms. Utah State Univ Press, Logan: 142–147.

    Google Scholar 

  • Graneli, W., 1979a. The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Arch. Hydrobiol. 87: 385–403.

    Google Scholar 

  • Graneli, W., 1979b. The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water. Hydrobiologia 66: 149–159.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Amer. Nat. 94: 421–425.

    Google Scholar 

  • Håkansson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer Verlag, Berlin, 316 pp.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1976. Diel migration and filter-feeding activities of Daphnia. Arch. Hydrobiol. 75: 87–132.

    Google Scholar 

  • Hansson, L. -A., L. Johansson & L. Persson, 1987. Effects of fish grazing on nutrient release and succession of primary producers. Limnol. Oceanogr. 32: 723–729.

    Google Scholar 

  • Henrikson, L., H. G. Nyman, H. G. Oscarson, & J. A. E. Stenson, 1980. Trophic changes, without changes in the external nutrient loading. Hydrobiologia 68: 257–263.

    Google Scholar 

  • Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.

    Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition on zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Hurlbert, S. H., J. Zedler & D. Fairbanks, 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 175: 639–641.

    Google Scholar 

  • Hutchinson, G. E. 1967. A treatise on Limnology (2). John Wiley & Sons Inc., NY, 1115 pp.

    Google Scholar 

  • Iwasa, Y. 1982. Vertical migration of zooplankton: a game between predator and prey. Am. Nat. 120: 171–180.

    Google Scholar 

  • Johannes, R. E., 1964. Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146: 923–924.

    Google Scholar 

  • Jonasson, P. M., 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos suppl. 14: 1–148.

    Google Scholar 

  • Kitchell, J. F., J. F. Koonce & P. S. Tennis, 1975. Phosphorus flux through fishes. Verh. int. Ver. Limnol. 19: 2478–2484.

    Google Scholar 

  • Kitchell, J. F., R. V. O'Neill, D. Webb, G. W. Galepp, S. M. Bartell, J. F. Koonce, & B. S. Ausmus, 1979. Consumer regulation of nutrient cycling. BioScience 29: 28–34.

    Google Scholar 

  • Krezoski, J. R., S. C. Mozley & J. A. Robbins, 1978. Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron. Limnol. Oceanogr. 23: 1011–1016.

    Google Scholar 

  • Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Leah, R. T., B. Moss & D. E. Forrest. 1980. The role of predation in causing major changes in the limnology of a hypereutrophic lake. Int. Revue ges. Hydrobiol. 65: 223–247.

    Google Scholar 

  • Lee, J. J. & Inman, D. L., 1975. The ecological role of consumers — an aggregated systems view. Ecology 56: 1455–1458.

    Google Scholar 

  • Lehman, J. T. 1980a. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    Google Scholar 

  • Lehman, J. T. 1980b. Nutrient cycling as an interface between algae and grazers in freshwater communities. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, (N.H.), Lond.: 251–263.

    Google Scholar 

  • Lembi, C. A., B. G. Ritenour, E. M. Iverson & E. C. Forss, 1978. The effects of vegetation removal by grass carp on water chemistry and phytoplankton in Indian ponds. Trans. am. Fish. Soc. 107: 161–171.

    Google Scholar 

  • Lessmark, O., 1983. Competition between perch (Perca fluviatilis) and roach (Rutilis rutilis) in south Swedish lakes. Inst. of Limnology, Univ. of Lund, Lund. 172 pp.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  • Matisoff, G., J. B. Fisher & S. Matis, 1985. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 122: 19–33.

    Google Scholar 

  • Merritt, R. W., K. W. Cummins & T. M. Burton, 1984. The role of aquatic insects in the processing and cycling of nutrients. In V. H. Resh & D. M. Rosenberg (eds.), The ecology of aquatic insects. Praeger, NY: 134–163.

    Google Scholar 

  • Milbrink, G., 1973. On the vertical distribution of oligochaetes in lake sediments. Rep. Inst. Freshw. Res. Drottningholm 53: 34–50.

    Google Scholar 

  • Mitzner, L., 1978. Evaluation of biological control of nuisance aquatic vegetation by grass carp. Trans. am. Fish. Soc. 107: 135–145.

    Google Scholar 

  • Murdoch, W. W., 1966. Community structure, population control and competition — A critique. Amer. Nat. 100: 219–226.

    Google Scholar 

  • Nakashima, B. S. & W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.

    Google Scholar 

  • Nakashima, B. S. & W. C. Leggett, 1982. How important is phosphorus excretion by fish to the phosphorus dynamics of lakes? Can. J. Fish. aquat. Sci. 39: 364–366.

    Google Scholar 

  • O'Neill, R. V. 1976. Ecosystem persistence and heterotrophic regulation. Ecology 57: 1244–1353.

    Google Scholar 

  • Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27: 55–112.

    Google Scholar 

  • Parma, S., 1971. Chaoborus flavicans (Meigen) (Diptera, Chaoboridae): an autecological study. Ph. d. thesis Groningen.

  • Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilis rutilis in a shallow eutrophic lake. Oikos 41: 118–125.

    Google Scholar 

  • Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.

    Google Scholar 

  • Peter, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr. W. Junk, The Hague.: 216–226.

    Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Prejs, A. & H. Jackowska, 1978. Lake macrophytes as the food of roach (Rutilus rutilus) and rudd (Scardinius erythrophthalmus L.). I. Species composition and dominance relations in the lake. Ekol. Pol. 26: 429–438.

    Google Scholar 

  • Revsbech, N. P., J. Sörensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.

    Google Scholar 

  • Schindler, D. W. & G. W. Comita. 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete winter oxygen depletion. Arch. Hydrobiol. 69: 413–451.

    Google Scholar 

  • Shapiro, J., 1980. The importance of trophic-level interactions to the abundance and species composition of algae in lakes. In J. Barica & L. R. Mur (eds.), Hypertrophic ecosystems. Developments in hydrobiology 2. Dr. W. Junk, The Hague: 105–116.

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation — an ecosystem approach to lake restoration. In P. L. Brezonik & J. L. Fox (es.) Water quality management through biological control. US EPA Report No. ENV-07–75–1, Univ. Florida, Gainsville: 85–96.

    Google Scholar 

  • Shapiro, J. & R. Carlson, 1982. Comment of the role of fish in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 39: 364.

    Google Scholar 

  • Spencer, C. N. & D. L. King, 1984. Role of fish in regulation of plant and animal communities in eutrophicated ponds. Can. J. Fish. aquat. Sci. 41: 1851–1855.

    Google Scholar 

  • Starkel, W. M., 1985. Predicting the effect of macrobenthos on the sediment/water flux of metals and phosphorus. Can. J. Fish. Aquat. Sci. 42: 95–100.

    Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Verein. Limnol. 20: 794–801.

    Google Scholar 

  • Sternik, K. -H., 1983. Untersuchungen zur Phosphor-Abgabe und inbesondere zur Orthophosphat-Exkretion junger Karpfen (Cyprinus carpio L.) Ein Beitrag zur Phosphor-Remobilisierung in Gewässern. Arch. Hydrobiol. Suppl. 66: 1–82.

    Google Scholar 

  • Taylor, W. D. & D. R. S. Lean, 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38: 1316–1321.

    Google Scholar 

  • Tessenow, U., 1964. Experimentaluntersuchungen zur Kieselsäurerückfuhrung aus dem Schlamm der Seen durch Chironomidenlarven (Plumosus-Gruppe). Arch. Hydrobiol. 60: 497–504.

    Google Scholar 

  • Walshe, B. M., 1950. The feeding habits of certain chironomid larvae (subfamily Tendipedinae). Proc. Zool. Soc. Lond. 121: 63–79.

    Google Scholar 

  • Warde, A., van, 1983. Aerobic and anaerobic amonia production by fish. Comp. Biochem. Physiol. 74B: 675–684.

    Google Scholar 

  • Webb, P. W., 1978. Partitioning of energy into metabolism and growth. In S. D. Gerking (ed.), Ecology of freshwater fish production. Blackwell Scientific Publications, Oxford, pp. 184–214.

    Google Scholar 

  • Weissenbach, H., 1974. Untersuchungen zum Phosphorhaushalt eines Hochgebirgsees (Voderer Finstertaler See, Kuhtai, Tirol) unter besonderer Berucksichting der Sedimente. Ph. d. thesis, Leopoldt-Franzens-Universität, Innsbruck.

    Google Scholar 

  • Wisniewski, R. J. & M. Planter, 1985. Exchange of phosphorus across sediment-water interface (with special attention to the influence of biotic factors) in several lakes of different trophic status. Verh. int. Verein. Limnol. 22: 3345–3349.

    Google Scholar 

  • Wood, L. W., 1975. Role of oligochaetes in the circulation of water and solutes across the mud-water interface. Verh. Intenat. Verein. Limnol. 19: 1530–1533.

    Google Scholar 

  • Wright, D., W. J. O'Brien & G. L. Vinyard, 1980. Adaptive value of vertical migration: A simulation model argument for the predation hypothesis. In W. C. Kerfoot (ed.) Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, (N. H.); Lond.: 138–147.

    Google Scholar 

  • Wright, D. I. & J. Shapiro, 1984. Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: 518–524.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, G., Granéli, W. & Stenson, J. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170, 267–284 (1988). https://doi.org/10.1007/BF00024909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024909

Keywords

Navigation