Skip to main content

Rational approximation of fractals

  • Approximation And Interpolation Theory
  • Conference paper
  • First Online:
Rational Approximation and Interpolation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1105))

Abstract

Stationary distributions for certain Markov chains of inverse branches of rational maps are put forward as the basis of an approximation theory for fractals. Results on existence and on computability of moments are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Barnsley, J. S. Geronimo, A. N. Harrington, "Orthogonal polynomials associated with invariant measures on Julia sets," Bulletin A.M.S. 7 (1982), 381–384.

    Article  MathSciNet  MATH  Google Scholar 

  2. —, "On the invariant sets of a family of quadratic maps," Comm. Math. Phys. (1983) 88, 479–501.

    Article  MathSciNet  MATH  Google Scholar 

  3. —, "Infinite dimensional Jacobi matrices associated with Julia sets," Proc. A.M.S. (1983) 88, 625–630.

    Article  MathSciNet  MATH  Google Scholar 

  4. —, "Geometry electrostatic measure and orthogonal polynomials on Julia sets for polynomials," to appear Journal of Ergodic Theory and Dynamical Systems (1982).

    Google Scholar 

  5. —, "Geometrical and electrical properties of some Julia sets," Ch. 1 of Quantum and Classical Models and Arithmetic Problems, (Dekker, 1984; edited by G. and D. Chudnovsky).

    Google Scholar 

  6. —, "Some treelike Julia sets and Padé approximants," Letters in Math. Phys. 7 (1983), 279–286.

    Article  MathSciNet  MATH  Google Scholar 

  7. —, "Almost periodic operators associated with Julia sets," Preprint (Georgia Institute of Technology, 1983), submitted to Comm. Math. Phys.

    Google Scholar 

  8. —, "Condensed Julia sets, with an application to a fractal lattice model Hamiltonian," submitted Trans. A.M.S. (1983).

    Google Scholar 

  9. M. F. Barnsley, A. N. Harrington, "Moments of balanced measures on Julia sets," to appear Trans. A.M.S. (1983).

    Google Scholar 

  10. D. Bessis, J. S. Geronimo, P. Moussa, "Mellin transforms associated with Julia sets and physical applications," Preprint (CEN-SACLAY, Paris, 1983).

    Google Scholar 

  11. D. Bessis, M. L. Mehta, P. Moussa, "Polynômes orthogonaux sur des ensembles de Cantor et iterations des transformations quadratiques," C. R. Acad. Sci. (Paris) 293 (1981), 705–708.

    MathSciNet  MATH  Google Scholar 

  12. —, "Orthogonal polynomials on a family of Cantor sets and the problem of iteration of quadratic maps," Letters in Math. Phys. 6 (1982), 123–140.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Bessis, P. Moussa, "Orthogonality properties of iterated polynomial mappings," Comm. Math. Phys. 88 (1983), 503–529.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Brolin, "Invariant sets under iteration of rational functions," Arkiv för Matematik 6 (1965), 103–144.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Gaal, Classical Galois Theory with Examples, Markham, Chicago, 1971.

    MATH  Google Scholar 

  16. N. Dunford, J. Schwartz, Linear Operators (Part I), John Wiley, 1957.

    Google Scholar 

  17. R. Mañè, "On the uniqueness of the maximizing measure for rational maps," Preprint (Rio de Janeiro, 1982).

    Google Scholar 

  18. B. Mandelbrot, The Fractal Geometry of Nature, (W. H. Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  19. T. S. Pitcher, J. R. Kinney, "Some connections between ergodic theory and iteration of polynomials," Arkiv för Matematik 8 (1968), 25–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Russell Graves-Morris Edward B. Saff Richard S. Varga

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Barnsley, M.F., Demko, S.G. (1984). Rational approximation of fractals. In: Graves-Morris, P.R., Saff, E.B., Varga, R.S. (eds) Rational Approximation and Interpolation. Lecture Notes in Mathematics, vol 1105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072400

Download citation

  • DOI: https://doi.org/10.1007/BFb0072400

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13899-0

  • Online ISBN: 978-3-540-39113-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics