Skip to main content

Tally NP sets and easy census functions

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

We study the question of whether every P set has an easy (i.e., polynomial-time computable) census function. We characterize this question in terms of unlikely collapses of language and function classes such as \(\# P_1 \subseteq FP\), where #P1 is the class of functions that count the witnesses for tally NP sets. We prove that every #P PH1 function can be computed in \(FP^{\# P_1 ^{\# P_1 } }\). Consequently, every P set has an easy census function if and only if every set in the polynomial hierarchy does. We show that the assumption \(\# P_1 \subseteq FP\) implies P = BPP and \(PH \subseteq MOD_k P\) for each k ≥ 2, which provides further evidence that not all sets in P have an easy census function. We also relate a set's property of having an easy census function to other well-studied properties of sets, such as rankability and scalability (the closure of the rankable sets under P-isomorphisms). Finally, we prove that it is no more likely that the census function of any set in P can be approximated (more precisely, can be n α-enumerated in time n β for fixed α and Β) than that it can be precisely computed in polynomial time.

Supported in part by NSF grant CCR-9315354.

Supported in part by the National Science Foundation under grants CCR-9701911 and INT-9726724.

Supported in part by grants NSF-INT-9513368/DAAD-315-PRO-fo-ab and NSF-CCR-9322513 and by a NATO Postdoctoral Science Fellowship from the Deutscher Akademischer Austauschdienst (“Gemeinsames Hochschulsonderprogramm III von Bund und Ländern”).

Work done in part while visiting the University of Kentucky and the University of Rochester.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17(6):1193–1202, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Journal of the ACM, 33(3):603–617, 1986.

    Article  MATH  Google Scholar 

  3. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6(2):305–322, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Cai and L. Hemachandra. Enumerative counting is hard. Information and Computation, 82(1):34–44, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Cai and L. Hemachandra. On the power of parity polynomial time. Mathematical Systems Theory, 23(2):95–106, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer and System Sciences, 48(1):116–148, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Goldsmith and S. Homer. Scalability and the isomorphism problem. Information Processing Letters, 57(3): 137–143, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing, 6(4):675–695, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Goldsmith, M. Ogihara, and J. Rothe. Tally NP sets and easy census functions. Technical Report TR 684, University of Rochester, Rochester, NY, March 1998.

    Google Scholar 

  10. L. Goldschlager and I. Parberry. On the construction of parallel computers from various bases of boolean functions. Theoretical Computer Science, 43(1):43–58, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Goldberg and M. Sipser. Compression and ranking. SIAM Journal on Computing, 20(3):524–536, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65(2/3): 159–181, 1985.

    MathSciNet  Google Scholar 

  13. L. Hemachandra and S. Rudich. On the complexity of ranking. Journal of Computer and System Sciences, 41(2):251–271, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate schemes. Acta Informatica, 34(11): 859–879, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical Computer Science, 34(1/2): 17–32, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302–309, April 1980. An extended version has also appeared as: Turing machines that take advice, L'Enseignement Mathématique, 2nd series 28, 1982, pages 191–209.

    Google Scholar 

  17. K. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in NP. SIAM Journal on Computing, 14(1):41–51, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta Informatica, 26(4):363–379, 1989.

    MATH  MathSciNet  Google Scholar 

  19. J. Köbler, U. Schöning, S. Toda, and J. Torán. Turing machines with few accepting computations and low sets for PP. Journal of Computer and System Sciences, 44(2):272–286, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Long and A. Selman. Relativizing complexity classes with sparse oracles. Journal of the ACM, 33(3):618–627, 1986.

    Article  MathSciNet  Google Scholar 

  21. A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pages 125–129, 1972.

    Google Scholar 

  22. M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure properties. Journal of Computer and System Sciences, 46(3):295–325, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proceedings of the 6th GI Conference on Theoretical Computer Science, pages 269–276. Springer-Verlag Lecture Notes in Computer Science #145, 1983.

    Google Scholar 

  24. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316–328, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–877, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters, 5(1):20–23, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  29. L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Rothe .

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsmith, J., Ogihara, M., Rothe, J. (1998). Tally NP sets and easy census functions. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055798

Download citation

  • DOI: https://doi.org/10.1007/BFb0055798

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics