Skip to main content

Learning a subclass of linear languages from positive structural information

  • Conference paper
  • First Online:
Grammatical Inference (ICGI 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1433))

Included in the following conference series:

Abstract

A method to infer a subclass of linear languages from positive structural information (i.e. skeletons) is presented. The characterization of the class and the analysis of the time and space complexity of the algorithm is exposed too. The new class, Terminal and Structural Distinguishable Linear Languages (TSDLL), is defined through an algebraic characterization and a pumping lemma. We prove that the proposed algorithm correctly identifies any TSDL language in the limit if structural information is presented. Furthermore, we give a definition of a characteristic structural set for any target grammar. Finally we present the conclusions of the work and some guidelines for future works.

Part of this work was carried out during a visit of J. Sempere to Prof. G. Nagaraja at IIT, Mumbai. The visit was granted by the área de Programas Internacionales (API) of the Universidad Politécnica de Valencia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Amar, G. PutzoluOn a Family of Linear Grammars. Information and Control 7 (1964) 283–291.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. García Learning k-Testable Tree Sets from positive data. Departamento de Sistemas Informáticos y Computación. Universidad Politécnica de Valencia. Technical report DSIC-II/46/93. 1993.

    Google Scholar 

  3. E. Mark GoldLanguage Identification in the Limit. Information and Control,10 (1969) 447–474.

    Article  Google Scholar 

  4. M. Harrison Introduction to Formal Language Theory. Addison-Wesley Publishing Company. 1978.

    Google Scholar 

  5. C. de la HigueraCharacteristic Sets for Polynomial Grammatical Inference. Machine Learning 27 (1997) 125–138.

    Article  MATH  Google Scholar 

  6. T. Koshiba, E. MÄkinen, Y. TakadaLearning deterministic even linear languages from positive examples. Theoretical Computer Science 185 (1997) 63–97.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. MÄkinenThe grammatical inference problem for the Szilard languages of Linear Grammars. Information Processing Letters 36 (1990) 203–206.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. MÄkinenOn the structural grammatical inference problem for some classes of context-free grammars. Information Processing Letters 42 (1992) 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. MÄkinenRemarks on the structural grammatical inference problem for context-free grammars. Information Processing Letters 44 (1992) 125–127.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. MÄkinenA note on the grammatical inference problem for even linear languages. Fundamenta Informaticae 25, No. 2 (1996) 175–181.

    MATH  MathSciNet  Google Scholar 

  11. V. RadhakrishnanGrammatical Inference from Positive Data: An Effective Integrated Approach. Ph.D. Thesis. Department of Computer Science and Engineering. HT Bombay. 1987.

    Google Scholar 

  12. V. Radhakrishnan and G. NagarajaInference of Regular Grammars via Skeletons. IEEE Trans. on Systems, Man and Cybernetics, 17, No. 6 (1987) 982–992.

    MathSciNet  Google Scholar 

  13. V. Radhakrishnan and G. NagarajaInference of Even Linear Languages and Its Application to Picture Description Languages. Pattern Recognition,21, No. 1 (1988) 55–62.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. RozenbergDirect Proofs of the Undecidability of the Equivalence Problem for Sentential Forms of Linear Context-Free Grammars and the Equivalence Problem for 0L Systems. Information Processing Letters 1 (1972) 233–235.

    Article  MATH  Google Scholar 

  15. J. Ruiz and P. GarcíaThe algorithms RT and k-TTI: A first comparison. Proceedings of the Second International Colloquium, ICGI-94. LNAI Vol. 862, pp 180–188. 1994.

    Google Scholar 

  16. Y. SakakibaraLearning context-free grammars from structural data in polynomial time. Theoretical Computer Science 76 (1990) 223–242.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. SakakibaraEfficient Learning of Context-Free Grammars from Positive Structural Examples. Information and Computation 97 (1992) 23–60.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.M. Sempere and P. García A Characterization of Even Linear Languages and its Application to the Learning Problem. Proceedings of the Second International Colloquium, ICGI-94. LNAI Vol. 862, pp 38–44. Springer-Verlag. 1994.

    Google Scholar 

  19. José M. Sempere and Antonio FosLearning linear grammars from Structural Information. Proceedings of the Third International Colloquium, ICGI-96. LNAI Vol. 1147, pp 126–133. Springer-Verlag. 1996.

    Google Scholar 

  20. Y. TakadaInferring Parenthesis Linear Grammars Based on Control Sets. Journal of Information Processing, 12, No. 1 (1988) 27–33.

    MATH  MathSciNet  Google Scholar 

  21. Y. TakadaGrammatical Inference for Even Linear Languages based on Control Sets. Information Processing Letters. 28, No. 4 (1988) 193–199.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. TakadaA hierarchy of languages families learnable by regular language learning. Information and Computation, 123(1) (1995) 138–145.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vasant Honavar Giora Slutzki

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sempere, J.M., Nagaraja, G. (1998). Learning a subclass of linear languages from positive structural information. In: Honavar, V., Slutzki, G. (eds) Grammatical Inference. ICGI 1998. Lecture Notes in Computer Science, vol 1433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054073

Download citation

  • DOI: https://doi.org/10.1007/BFb0054073

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64776-8

  • Online ISBN: 978-3-540-68707-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics