Skip to main content

Biomimetic chemistry of hemes inside aqueous micelles

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 81))

Abstract

Hemes encapsulated in aqueous detergent micelles find themselves in a large macromolecular cavity whose interaction is mainly hydrophobic. It has been suggested that such systems appear to simulate the electrostatic and hydrophobic interactions of the heme cavity in metalloproteins. The present article surveys reported studies on natural and synthetic hemes, both ferric and ferrous, incorporated inside micelles of different sizes and surface charges. The emphasis is laid on multinuclear NMR and optical spectroscopic studies. The effect of micellar interactions on the electronic properties of hemes is discussed and compared with that of the heme cavity in proteins.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wüthrich K (1973) Structure and Bonding 8: 53

    Google Scholar 

  2. Antonini E, Brunori M (1971) In: Hemoglobins and myoglobins in their reactions with ligands, North-Holland, Amsterdam, chap 4

    Google Scholar 

  3. LaMar GN, Walker FA (1979) In: Dolphin D (ed) The porphyrins. Academic, New York, vol IV, p 61

    Google Scholar 

  4. Chang CK, Traylor TG (1973) J Am Chem Soc 95: 5810

    Google Scholar 

  5. Traylor TG, Chang CK, Geibel J, Berzinis A, Mincey T, Cannon J (1979) J Am Chem Soc 101: 6716

    Google Scholar 

  6. Traylor TG, Campbell D, Tsuchiya S, Mitchell M, Stynes DV (1980) J Am Chem Soc 102: 5959

    Google Scholar 

  7. Collman JP, Reed CA (1973) J Am Chem Soc 93: 2048

    Google Scholar 

  8. White WI (1978) in: Dolphin D. (ed.) ‘The Porphyrins', Academic, New York, 5, 303

    Google Scholar 

  9. Mazumdar S, Mitra S (1990) J Phys Chem 94: 561

    Google Scholar 

  10. Brault D, Rougee M (1974) Biochemistry 13: 4591.

    Google Scholar 

  11. Brault D, Rougee M (1975) Biochemistry, 14: 4100

    Google Scholar 

  12. Brault D, Rougee M (1973) Nature (London), 241: 19

    Google Scholar 

  13. Goff HM, LaMar GN, Reed CA (1977) J Am Chem Soc 99: 3641

    Google Scholar 

  14. Mispelter J, Momenteau M, Lhoste JM (1977) Mol Phys 33: 1715

    Google Scholar 

  15. Goff HM, LaMar GN (1977) J Am Chem Soc 99: 6599.

    Google Scholar 

  16. LaMar GN, Budd DL, Goff HM (1977) Biochem Biophys Res Comm 77: 104

    Google Scholar 

  17. Simplicio J (1972) Biochemistry 11: 2525; Simplicio J (1972) Biochemistry 11: 2529

    Google Scholar 

  18. Simplicio J, Schwenzer K (1973) Biochemistry 12: 1923

    Google Scholar 

  19. Simplicio J, Schwenzer K, Maenpa F (1975) J Am Chem Soc 97: 7319

    Google Scholar 

  20. Bartocci C, Scola F, Ferri A, Carassiti V (1979) Inorg Chim Acta 37: L473

    Google Scholar 

  21. McGratth TM, LaMar GN (1978) Biochim Biophys Acta 534: 99

    Google Scholar 

  22. Mazumdar S, Medhi OK, Mitra S (1988) Inorg Chem 27: 2541

    Google Scholar 

  23. Medhi OK, Mazumdar S, Mitra S (1989) Inorg Chem 28: 3243

    Google Scholar 

  24. Mazumdar S, Medhi OK, Mitra S (1990) J Chem Soc (Dalton) 1057

    Google Scholar 

  25. Mazumdar S, Medhi OK, Mitra S (1991) Inorg Chem 30: 700

    Google Scholar 

  26. Chachaty C (1987) Prog NMR Spectroscopy 19: 183

    Google Scholar 

  27. Wennerström H, Lindman B (1979) Physics Reports 52: 1

    Google Scholar 

  28. Lindman B, Wennerström H (1980) In: Topics in Current Chemistry 1

    Google Scholar 

  29. Mazumdar S, Medhi OK, Kannadagulli N, Mitra S (1989) J Chem Soc (Dalton) 1003

    Google Scholar 

  30. Hambright P, Chock PB (1975) J Inorg Nucl Chem 37: 2363

    Google Scholar 

  31. Caughey WS, Barlow CH, O'Keefe DH, O'Toole MC (1973) Ann NY Acad Sci 206: 296

    Google Scholar 

  32. Mazumdar S (1991) J Chem Soc (Dalton) 2091

    Google Scholar 

  33. Bunton CA, Romsted LS, Sepulveda L (1980) J Phys Chem 84: 2611

    Google Scholar 

  34. Tsou CL (1951) Biochem J 49:362.

    Google Scholar 

  35. Tuppy H, Palèus S (1955) Acta Chem Sc; 9: 353

    Google Scholar 

  36. Paléus S, Ehrenberg A, Tuppy H (1955) Acta Chem Scand 9: 365

    Google Scholar 

  37. Jehanli AMT, Stotter DA and Wilson MT (1976) Eur J Biochem 71: 613

    Google Scholar 

  38. Minch MJ, LaMar GN (1982) J Phys Chem 86: 1400

    Google Scholar 

  39. Smith TD, Gaunt R, Ruzic I (1983) Inorg Chim Acta 78: 103

    Google Scholar 

  40. Medhi OK, Houlton A, Silver J (1989) Inorg Chim Acta 161: 213

    Google Scholar 

  41. Budd DL, LaMar GN, Langry KC, Smith KM, Nayyir Mazhir R (1979) J Am Chem Soc 102: 6091

    Google Scholar 

  42. Zobrist M, LaMar GN (1978) J Am Chem Soc 100: 1944

    Google Scholar 

  43. Kurland RJ, Little RG, Davis DG, Ho C (1971) Biochemistry 10: 2237

    Google Scholar 

  44. Morishima I, Ogawa S, Inubushi T, Yonezawa T, Iizuka TT (1977) Biochemistry 16: 5109

    Google Scholar 

  45. Behere DV, Birdy R, Mitra S (1984) Inorg Chem 23: 1978

    Google Scholar 

  46. Chang L, Latos-Grzynski, Balch AL (1982) Inorg Chem 21: 2412

    Google Scholar 

  47. Fielding L, Eaton GR, Eaton SS (1985) Inorg Chem 24: 2309

    Google Scholar 

  48. Shirazi WA, Bruice TC (1986) Inorg Chem 25: 3845; and references therein

    Google Scholar 

  49. Goff HM (1983) In: Lever ABP, Gray HB (eds) Iron porphyrins. Addison-Wesley, Reading MA, part I chap 4, p 239

    Google Scholar 

  50. Morishima I, Katagawa S, Matsuki E, Inubushi T (1980) J Am Chem Soc 102: 2429

    Google Scholar 

  51. Behere DV, Goff HM (1984) J Am Chem Soc 106: 4946

    Google Scholar 

  52. Morishima I, Inubushi T (1977) J Chem Soc Chem Comm 616

    Google Scholar 

  53. Morishima I, Inubushi T (1968) J Am Chem Soc 100: 3568

    Google Scholar 

  54. Morishima I, Inubushi T, Neya S (1977) Biochem Biophys Res Comm 78: 739

    Google Scholar 

  55. Morishima I, Inubushi T (1978) Biochem Biophys Res Comm 80: 199

    Google Scholar 

  56. von Goldammer E, Zorn H, Daniels A (1975) Eur J Biochem 57: 291

    Google Scholar 

  57. Horrocks Jr DW, Greenberg RG (1974) Mol phys 27: 993

    Google Scholar 

  58. Boyd PWD, Buckingham DA, Meeking RF, Mitra S (1979) Inorg Chem 18: 3585

    Google Scholar 

  59. Mitra S (1983) In Lever ABP, Gray HB (eds) Iron Porphyrins. Addison-Wisley, Massachusetts, Part II, page 1

    Google Scholar 

  60. Barraclough CG, Martin RL, Mitra S, Sherwood RC (1970) J Chem Phys 53: 1643

    Google Scholar 

  61. Mispelter M, Momenteau M, Lhoste JM (1981) Biochimie 63: 911

    Google Scholar 

  62. Mispelter M, Momenteau M, Lhoste JM (1980) J Chem Phys 72: 1003

    Google Scholar 

  63. Medhi OK, Silver J (1989) J Chem Soc (Chem comm) 1199

    Google Scholar 

  64. Ann Walker F, Lo MW, Ree MT (1976) J Am Chem Soc 98: 5552

    Google Scholar 

  65. Satterlee JD, LaMar GN, Frye JS (1976) J Am Chem Soc 98: 7275

    Google Scholar 

  66. LaMar GN (1979) In: Shulman RG (ed) Biological Applications of Magnetic Resonance. Academic, New York, chap 7, p 305

    Google Scholar 

  67. Mazumdar S, Medhi OK (1990) J Chem Soc (Dalton) 2633

    Google Scholar 

  68. Sams JR, Tsin TB (1974) Chem Phys Lett 25: 599

    Google Scholar 

  69. Collman JP, Reed CA (1973) J Am Chem Soc 95: 2048

    Google Scholar 

  70. Dolphin D, Sams JR, Tsin TB, Wong KL (1976) J Am Chem Soc 98: 6970

    Google Scholar 

  71. Behere DV, Birdy R, Mitra S (1982) Inorg Chem 21: 386

    Google Scholar 

  72. Sheard B, Yamane T, Shulman RG (1970) J Mol Biol 53: 35

    Google Scholar 

  73. Mazumdar S (1990) J Phys Chem 94: 5947

    Google Scholar 

  74. Viscio DB, LaMar GN (1978) J Am Chem Soc 100: 8092

    Google Scholar 

  75. Viscio DB, LaMar GN (1978) J Am Chem Soc 100: 8096

    Google Scholar 

  76. Cabane B (1981) Physique J 42: 847

    Google Scholar 

  77. Chevalier Y, Chachaty C (1985) J Phys Chem 89: 875

    Google Scholar 

  78. Bert-Ove Persson, Drakenberg T, Lindman B (1976) J Phys Chem 80: 2174

    Google Scholar 

  79. Bert-Ove Persson, Drakenberg T, Lindman B (1979) J Phys Chem 83: 3011

    Google Scholar 

  80. Williams E, Sears B, Allerhand A and Cordes EH (1973) J Am Chem Soc 95: 4871

    Google Scholar 

  81. Dwek RA (1973) In: Nuclear magnetic resonance (NMR) in biochemistry, Clarendon Oxford

    Google Scholar 

  82. Dwek RA (1974) In: Sigel H (ed) Metal ions in biological systems, vol 4; Marcel Dekker New York

    Google Scholar 

  83. Gruen DWR (1985) J Phys Chem 89: 153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Mazumdar, S., Mitra, S. (1993). Biomimetic chemistry of hemes inside aqueous micelles. In: Structures and Biological Effects. Structure and Bonding, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036818

Download citation

  • DOI: https://doi.org/10.1007/BFb0036818

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56481-2

  • Online ISBN: 978-3-540-47567-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics