Skip to main content

Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 113))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANF:

Atrial natriuretic factor

CAP:

Catabolite gene activator protein

cAMP-PK:

cAMP-dependent protein kinase

cGMP-PK:

cGMP-dependent protein kinase

EDRF:

Endothelium-derived relaxing factor

GC:

Guanylate cyclase

kDA:

Kilodaltons

IP3 :

Inositol-1,4,5-trisphosphate

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

NO:

Nitric oxide

PAF:

Platelet activating factor

PDE:

Phosphodiesterase

PG-I2 :

Prostaglandin I2 (prostacyclin)

PG-E1 :

Prostaglandin E1

PI:

Phosphatidylinositol

PLC:

Phospholipase C

PKC:

Protein kinase C

SDS-PAGE:

Sodium dodecyl sulfate — polyacrylaminde gel electrophoresis

SNP:

Sodium nitroprusside

VASP:

Vasodilator-stimulated phosphoprotein

SDS:

Sodium dodecyl sulfate

References

  • Adunyah SE, Dean WL (1987) Regulation of human platelet membrane Ca2+ transport by cAMP-and calmodulin-dependent phosphorylation. Biochim Biophys Acta 930:401–409

    Article  PubMed  Google Scholar 

  • Aitken A, Bilham T, Cohen P, Aswad D, Greengard P (1981) A specific substrate from rabbit cerebellum for guanosine-3′:5′-monophosphate-dependent protein kinase. J Biol Chem 256:3501–3506

    PubMed  Google Scholar 

  • Ardaillou N, Nivez M-P, Ardaillou R (1986) Stimulation of cGMP synthesis in human cultured glomerular cells by atrial natriuretic peptide. FEBS Lett 204:177–182

    Article  PubMed  Google Scholar 

  • Arnold WP, Mittal C, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    PubMed  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    Article  PubMed  Google Scholar 

  • Aswad DW, Greengard P (1981a) A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 256:3487–3493

    PubMed  Google Scholar 

  • Aswad DW, Greengard P (1981b) A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 256:3494–3500

    PubMed  Google Scholar 

  • Baltensperger K, Carafoli E, Chiesi M (1988) The Ca2+-pumping ATPase and the major substrates of the cGMP-dependent protein kinase in smooth muscle sarcolemma are distinct entities. Eur J Biochem 172:7–16

    Article  PubMed  Google Scholar 

  • Bandle E, Guidotti A (1979) Ontogenetic studies of cGMP-dependent protein kinase in rat cerebellum. J Neurochem 32:1343–1347

    PubMed  Google Scholar 

  • Beavo JA (1988) Multiple isoenzymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res 22:1–38

    PubMed  Google Scholar 

  • Beavo JA, Hardman JG, Sutherland EW (1971) Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J Biol Chem 246:3841–3846

    PubMed  Google Scholar 

  • Beebe SJ, Corbin JD (1986) Cyclic nucleotide-dependent protein kinases. In: Boyer PD, Krebs EG (eds) The enzymes, vol 17, 3rd edn. Academic, New York, pp 43–111

    Google Scholar 

  • Berridge MJ (1987) Inositoltriphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    PubMed  Google Scholar 

  • Blache D, Ciavatti M, Ponsin G, Nargeot J (1987) Direct evidence for the modulation of human platelet cytosolic free Ca2+ by intracellular cAMP produced with a photoactivatable derivative. Biochem Biophys Res Commun 146:321–331

    Article  PubMed  Google Scholar 

  • Böhme E, Grossman G, Herz J, Mulsch A, Spies C, Schultz G (1984) Regulation of cyclic GMP formation by soluble guanylate cyclase stimulation by NO-containing compounds. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:259–266

    PubMed  Google Scholar 

  • Boyles J, Joyce N, DeCamilli P, Walter U, Mentone S (1984) Immunocytochemical localization of high levels of cGMP-dependent protein kinase in vascular and somatic smooth muscle cells, myofibroblasts and myoepithelial cells. Adv Cyclic Nucleotide Protein Phosphorylation Res 17A:65

    Google Scholar 

  • Brunton TL (1867) Use of nitrite of amyl in angina pectoris. Lancet 97–98

    Google Scholar 

  • Busse R, Lückhoff A, Bassenge E (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedeberg's Arch Pharmacol 336:566–571

    Article  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of the enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  PubMed  Google Scholar 

  • Casnellie JE, Greengard P (1974) Guanosine 3′:,5′-cyclic monophosphate-dependent phosphorylation of endogeneous substrate proteins in membranes of mammalian smooth muscle. Proc Natl Acad Sci USA 71:1891–1895

    PubMed  Google Scholar 

  • Casnellie JE, Ives HE, Jamieson JD, Greengard P (1980) Cyclic GMP-dependent protein phosphorylation in intact medial tissue and isolated cells from vascular smooth muscle. J Biol Chem 255:3770–3776

    PubMed  Google Scholar 

  • Chabardès D, Montegut M, Mistaoui M, Butlen D, Morel F (1987) Atrial natriuretic peptide effects on cGMP and cAMP contents in microdissected glomeruli and segments of the rat and rabbit nephrons. Pflugers Arch 408:366–372

    Article  PubMed  Google Scholar 

  • Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    Article  PubMed  Google Scholar 

  • Coquil JF, Brunelle G, Leclerc L, Cuhe J-L, Guédon J (1987) Activity of cGMP-dependent protein kinase in aortae from spontaneously hypertensive rats. J Hypertens 5:347–354

    PubMed  Google Scholar 

  • Corbin JD, Ogreid D, Miller JP, Suva RH, Jastorff B, Doskeland SO (1986) Studies of cGMP analog specifity of the two intrasubunit binding sites of cGMP-dependent protein kinase. J Biol Chem 261:1208–1214

    PubMed  Google Scholar 

  • Cornwell TL, Lincoln TM (1989) Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells: reduction of Ca2+ by atriopeptin and 8-Br-cGMP is mediated by cGMP-dependent protein kinase. J Biol Chem 264:1146–1155

    PubMed  Google Scholar 

  • Crouch MF, Lapetina EG (1988) A role for Gi in control of thrombin receptor-phospholipase C coupling in human platelets. J Biol Chem 263:3363–3371

    PubMed  Google Scholar 

  • DeBold AJ, Borenstein HB, Veress H, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    Article  PubMed  Google Scholar 

  • DeCamilli P, Miller PE, Levitt P, Walter U, Greengard P (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11:761–817

    Article  PubMed  Google Scholar 

  • DeJonge HR (1981) Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv Cyclic Nucleotide Res 14:315–333

    PubMed  Google Scholar 

  • DeJonge HR (1984) The mechanism of action of Escherichia coli heatstable toxin. Biochem Soc Trans 12:180–184

    PubMed  Google Scholar 

  • DeJonge HR, Lohmann SM (1985) Mechanisms by which cyclic nucleotides and other intracellular mediators regulate secretion. Microbial toxins and diarrheal disease. Ciba Found Symp 112:116–138

    PubMed  Google Scholar 

  • DeJonge HR, Vaandrager AB, O'Grady SM, Field M (1986) A 50 Kd protein in flounder intestine brush borders (BB) is phosphorylated by cGMP and Ca-CaM kinases and is specifially dephosphorylated by a cAMP-activated phosphatase. Fed Proc 45:4281

    Google Scholar 

  • DeLanerolle P, Nishikawa H, Yost DA, Adelstein RS (1984) Increased phosphorylation of MLCK after in increase in cyclic AMP in intact smooth muscle. Science 223:1415–1417

    PubMed  Google Scholar 

  • Detre JA, Nairn AC, Aswad DW, Greengard P (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3′:5′-cyclic monophosphate-dependent protein kinase. J Neurosci 4:2843–2849

    PubMed  Google Scholar 

  • Diamond J, Holmes TG (1975) Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium. Can J Physiol Pharmacol 53:1099–1107

    PubMed  Google Scholar 

  • Draznin MB, Rapoport RM, Murad F (1986) Myosin light chain phosphorylation in contraction and relaxation of intact rat thoracic aorta. Int J Biochem 18:917–928

    Article  PubMed  Google Scholar 

  • Drummond GI, Perrot-Yee S (1961) Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J Biol Chem 236:1126–1129

    PubMed  Google Scholar 

  • Ecker T, Göbel C, Hullin R, Felbel, J, Schröder I, Hofmann F (1988) High blood pressure decreases cardiac cGMP-kinase concentration in rat. J Biol Chem Hoppe-Seyler 369:811

    Google Scholar 

  • Edelmann AM, Blumenthal DK, Krebs EG (1987) Protein serine/threonine kinases. Annu Rev Biochem 56:567–613

    PubMed  Google Scholar 

  • Enouf J, Bredoux R, Boucheix C, Mirshahi M, Soria C, Levy-Toledano S (1985) Possible involvement of two proteins (phosphoprotein and CD 9 (p24)) in regulation of platelet calcium fluxes. FEBS Lett 183:398–402

    Article  PubMed  Google Scholar 

  • Enouf J, Lompre A-M, Bredoux R, Bourdeau M, de LaBastie D, Levy-Toledano S (1988) Different sensitivity to trypsin of human platelet plasma and intracellular membrane Ca2+ pumps. J Biol Chem 263:13922–13929

    PubMed  Google Scholar 

  • Exton JH (1988) Mechanism of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J 2:2670–2676

    PubMed  Google Scholar 

  • Felbel J, Trockur B, Ecker T, Landgraf W, Hofmann F (1988) Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem 263:16764–16771

    PubMed  Google Scholar 

  • Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313

    Article  PubMed  Google Scholar 

  • Field M, Graf LH, Laird WJ, Smith PL (1978) Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75:2800–2804

    PubMed  Google Scholar 

  • Fiscus RR, Murad F (1988) cGMP-dependent protein kinase activation in intact cells. Methods Enzymol 159:150–159

    PubMed  Google Scholar 

  • Fiscus RR, Rapoport RM, Murad F (1984) Endothelium-dependent and nitrovasodilator-induced activation of cGMP-dependent protein kinase in rat aorta. J Cyclic Nucleotide Protein Phosphor Res 9:415–425

    Google Scholar 

  • Fiscus Rapoport RM, Waldman SA, Murad F (1985) Atriopeptin II elevates cGMP, activates cGMP-dependent protein kinase and causes relaxation in rat thorax aorta. Biochim Biophys Acta 846:179–184

    Article  PubMed  Google Scholar 

  • Foster JL, Higgins GC, Jackson FR (1988) Cloning, sequence and expression of Drosophila cAMP-dependent protein kinase catalytic subunit gene. J Biol Chem 263:1676–1681

    PubMed  Google Scholar 

  • Fox JEB (1987) The platelet cytoskeleton. In: Verstraete M, Vermylen J, Lijnen HR, Arnout J (eds) Thrombosis and haemostasis 1987. Leuven University Press, Leuven, pp 175–225

    Google Scholar 

  • Fox JEB, Reynolds CC, Johnson MM (1987) Identification of glycoprotein Ib β as one of the major proteins phosphorylated during exposure of intact platelets to agents that activate cAMP-dependent protein kinase. J Biol Chem 262:12627–12631

    PubMed  Google Scholar 

  • Furchtgott RF (1984) The role of endothelium in the response of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24:175–197

    Article  PubMed  Google Scholar 

  • Furchtgott RF, Zawadski JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  Google Scholar 

  • Furukawa K, Nakamura H (1987) Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+) ATPase in vascular smooth muscle. J Biochem 101:287–290

    PubMed  Google Scholar 

  • Furukawa K-I, Tawada Y, Shigekawa M (1988) Regulation of the plasma membrane Ca2+-pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem 263:8058–8065

    PubMed  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA-receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  PubMed  Google Scholar 

  • Genest J, Cantin M (1988) The artrial natriuretic factor: its physiology and biochemistry. Rev Physiol Biochem Pharmacol 110:1–145

    PubMed  Google Scholar 

  • George WJ, Polson JB, O'Toole AG, Goldberg ND (1970) Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403

    PubMed  Google Scholar 

  • Gerzer R, Böhme E, Hofmann F, Schultz G (1981a) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132:71–74

    Article  PubMed  Google Scholar 

  • Gerzer R, Hofmann F, Schultz G (1981b) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116:479–486

    Article  PubMed  Google Scholar 

  • Gerzer R, Hamet P, Ross AH, Lawson JA, Hardman JG (1983) Calcium-induced release from platelet membranes of fatty acids that modulate soluble guanylate cyclase. J Pharmacol Exp Ther 226:180–186

    PubMed  Google Scholar 

  • Gerzer R, Brash AR, Hardman JG (1986) Activation of soluble guanylate cyclase by arachidonic acid and 15-lipooxygenase products. Biochim Biophys Acta 886:383–389

    Article  PubMed  Google Scholar 

  • Gill GN, Holdy KE, Walton GM, Kanstein CB (1976) Purification and characterization of 3′,5′-cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 73:3918–3922

    PubMed  Google Scholar 

  • Glass DB, Smith SB (1983) Phosphorylation by cGMP-dependent protein kinase of a synthetic peptide corresponding to the autophosphorylation site in the enzyme. J Biol Chem 258:14797–14803

    PubMed  Google Scholar 

  • Glass DB, Frey II W, Carr DW, Goldberg ND (1977) Stimulation of human platelet guanylate cyclase by fatty acids. J Biol Chem 252:1279–1285

    PubMed  Google Scholar 

  • Glass DB, McFann LJ, Miller MD, Zeilig CE (1981) Interaction of cGMP-dependent protein kinase with phosphate accepting proteins and peptides. In: Rosen OM, Krebs EG (eds) Protein phosphorylation. Cold Spring Harbor Conf Cell Prolif 8:267–291

    Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46:823–896

    Article  PubMed  Google Scholar 

  • Goldberg ND, Ames III A, Gander JE, Walseth TF (1983) Magnitude of increase in retinal cGMP metabolic flux determined by 18-0 incorporation into nucleotide alpha-phosphoryls corresponds with intensity of photic stimulation. J Biol Chem 258:9213–9219

    PubMed  Google Scholar 

  • Graff G, Stephenson JH, Glass DB, Haddox MK, Goldberg ND (1978) Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides. J Biol Chem 253:7662–7676

    PubMed  Google Scholar 

  • Halbrügge M, Walter U (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 185

    Google Scholar 

  • Hardmann JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J Biol Chem 244:6363–6370

    PubMed  Google Scholar 

  • Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase a receptor for new cardiotonic drugs. Mol Pharmacol 25:506–514

    Google Scholar 

  • Hartzell HC, Fischmeister F (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275

    Article  PubMed  Google Scholar 

  • Hashimoto E, Takio K, Krebs EG (1981) Studies on the site in the regulatory subunit of type I cAMP-dependent protein kinase phosphorylated by cGMP-dependent protein kinase. J Biol Chem 256:5604–5607

    PubMed  Google Scholar 

  • Haslam RJ (1987) Signal transduction in platelet activation. In: Verstraete M, Vermylen J, Lijnen R, Arnout J (eds) Thrombosis and haemostasis 1987. Leuven University Press, Leuven, pp 147–174

    Google Scholar 

  • Haslam RJ, Salama SE, Fox JEB, Lynham JA, Davidson MML (1980) Role of cyclic nucleotides and of protein phosphorylation in the regulation of platelet function. In: Rotman A, Meyer FA, Gitler C, Silberberg A (eds) Platelets: cellular response mechanisms and their biological significance. Wiley, New York, pp 213–231

    Google Scholar 

  • Hassid A (1986) Atriopeptin II decreases cytosolic free Ca in cultured vascular smooth muscle cells. Am J Physiol 251:C681–C686

    PubMed  Google Scholar 

  • Heil WG, Landgraf W, Hofmann F (1987) A catalytically active fragment of cGMP-dependent protein kinase. Eur J Biochem 168:117–121

    Article  PubMed  Google Scholar 

  • Hettasch JM, Le Breton GC (1987) Modulation of Ca2+ fluxes in isolated platelet vesicles: effects of cAMP-dependent protein kinase and protein kinase inhibitor on Ca2+ sequestration and release. Biochim Biophys Acta 931:49–58

    Article  PubMed  Google Scholar 

  • Hofmann F, Sold G (1972) A protein kinase activity from rat cerebellum stimulated by guanosine 3′,5′-monophosphate. Biochem Biophys Res Commun 49:1100–1107

    Article  PubMed  Google Scholar 

  • Hofmann F, Bechtel PJ, Krebs EG (1977) Concentration of cAMP-dependent protein kinase subunits in various tissue. J Biol Chem 252:1441–1447

    PubMed  Google Scholar 

  • Hofmann F, Nastainczyk W, Rohrkasten A, Schneider I, Sieber M (1987) Regulation of the L-type calcium channel. Trends Pharmacol Sci 8:393–398

    Article  Google Scholar 

  • Holzmann S (1982) Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucl Res 8:409–419

    Google Scholar 

  • Hughes J, Murad F, Chang B, Guerrant R (1978) Role of cGMP in the action of heat-stable enterotoxin of E. coli. Nature 271:755–756

    Article  PubMed  Google Scholar 

  • Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular muscle relaxation. Ann Rev Pharmacol Toxicol 25:171–191

    Article  Google Scholar 

  • Ignarro LJ, Lippton HL, Edwards JC, Barricos WH, Hyman AL (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218:739–749

    PubMed  Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1984) Regulation of purified soluble guanylate cyclase by porphyrins and metalloporphyrins: a unifying concept. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:267–274

    PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    PubMed  Google Scholar 

  • Ives HE, Casnellie JE, Greengard P, Jamieson JD (1980) Subcellular localization of cyclic GMP-dependent protein kinase and its substrates in vascular smooth muscle. J Biol Chem 255:3777–3785

    PubMed  Google Scholar 

  • Johnson RM, Lincoln TM (1985) Effects of nitroprusside, glyceryl trinitrate, and 8-bromo-cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol 27:333–342

    PubMed  Google Scholar 

  • Jones AW, Bylund DB, Forte LR (1984) cAMP-dependent reduction in membrane fluxes during relaxation of arterial smooth muscle. Am J Physiol 246:H306–H311

    PubMed  Google Scholar 

  • Joyce NC, DeCamilli P, Boyles JE (1984) Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cGMP-dependent protein kinase. Microvasc Res 28:206–219

    Article  PubMed  Google Scholar 

  • Joyce NC, DeCamilli P, Lohmann SM, Walter U (1986) cGMP-dependent protein kinase is present in high concentration in contractile cells of the kidney vasculature. J Cyclic Nucleotide Protein Phosphor Res 11:191–198

    PubMed  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1987) Morphologic and biochemical evidence for a contractile cell network within the rat intestinal mucosa. Gastroenterology 92:68–81

    PubMed  Google Scholar 

  • Kai H, Kanaide H, Matsumoto T, Nakamura M (1987) 8-Bromoguanosine 3′:5′-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta. FEBS Lett 221:284–288

    Article  PubMed  Google Scholar 

  • Kalderon D, Rubin GM (1989) cGMP-dependent protein kinase genes in Drosophila. J Biol Chem 264:10738–10748

    PubMed  Google Scholar 

  • Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    PubMed  Google Scholar 

  • Käser-Glanzmann R, Gerber E, Lüscher EF (1979) Regulation of the intracellular calcium level in human platelets: cAMP-dependent phosphorylation of a 22 000 dalton component in isolated Ca2+-accumulating vesicles. Biochim Biophys Acta 558:344–347

    PubMed  Google Scholar 

  • Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin, and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3:23–25

    PubMed  Google Scholar 

  • Kaupp UB, Koch K-W (1986) Mechanism of photoreception in vertebrate vision. TIBS 11:43–47

    Google Scholar 

  • Kobayashi S, Kanaide H, Nakamura M (1985) Cytosolic-free calcium transients in cultured vascular smooth muscle cells: microfluorometric measurements. Science 229:553–556

    PubMed  Google Scholar 

  • Koch K-W, Kaupp UB (1985) Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem 260:6788–6800

    PubMed  Google Scholar 

  • Koch K-W, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66

    Article  PubMed  Google Scholar 

  • Koesling D, Herz J, Gausepohl H, Niroomand F, Hinsch K-D, Mülsch A, Boehme E, Schultz G, Frank R (1988) The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Lett 239:29–34

    Article  PubMed  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–938

    Article  PubMed  Google Scholar 

  • Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Makane M, Murad F (1986a) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    PubMed  Google Scholar 

  • Kuno T, Kamisaki Y, Waldman SA, Gariepy J, Schoolnik G, Murad F (1986b) Characterization of the receptor for heat-stable enterotoxin from Escherichia coli in rat intestine. J Biol Chem 261:1470–1476

    PubMed  Google Scholar 

  • Kuo JF (1975) Changes in the relative levels of guanosine 3′,5′-monophosphate-dependent and adenosine 3′,5′-monophosphate-dependent protein kinase in lung, heart and brain of developing guinea pigs. Proc Natl Acad Sci USA 72:2256–2259

    PubMed  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinase VI. Isolation and partial purification of a protein kinase activated by guanosine 3′,5′-monophosphate. J Biol Chem 245:2493–2498

    PubMed  Google Scholar 

  • Kuo WN, Shoji M, Kuo JF (1976) Stimulatory modulator of guanosine 3′,5′-monophosphate-dependent protein kinase from mammalian tissues. Biochem Biophys Acta 437:142–149

    PubMed  Google Scholar 

  • Lamb NJC, Fernandez A, Conti MA, Adelstein R, Glass DB, Welch WJ, Feramisco JR (1988) Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase. J Cell Biol 106:1955–1971

    Article  PubMed  Google Scholar 

  • Landgraf W, Hullin R, Gobel C, Hofmann F (1986) Phosphorylation of cGMP-dependent protein kinase increases the affinity for cAMP. Eur J Biochem 154:113–117

    Article  PubMed  Google Scholar 

  • Langan TA, Zeilig C, Leichtling B (1981) Characterization of multiple-site phosphorylation of H1 histone in proliferating cells. In: Rosen OM, Krebs EG (eds) Protein phosphorylation. Cold Spring Harbor Conf Cell Prolif 8:1039–1052

    Google Scholar 

  • Laragh JH (1985) Atrial natriuretic hormone, the renin-aldosterone axis and blood pressure-electrolyte homeostasis. N Engl J Med 313:1330–1340

    PubMed  Google Scholar 

  • Leitman DC, Andresen JW, Catalano RM, Waldman SA, Tuan JJ, Murad F (1988) Atrial natriuretic peptide binding, cross-linking, and stimulation of cGMP accumulation and particulate guanylate cyclase activity in cultured cells. J Biol Chem 263:3720–3728

    PubMed  Google Scholar 

  • LePeuch CJ, LePeuch DAM, Katz S, Demaille JG, Hincke MT, Bredoux R, Enouf J, Levy-Toledano S, Caen J (1983) Regulation of calcium accumulation and efflux from platelet vesicles. Possible role for cAMP-dependent phosphorylation and calmodulin. Biochim Biophys Acta 731:456–464

    PubMed  Google Scholar 

  • Lincoln TM (1989) Cyclic GMP and the mechanism of vasodilation. Pharmacol Ther 41:479–502

    Article  PubMed  Google Scholar 

  • Lincoln TM, Corbin JD (1983) Characterization and biological role of the cGMP-dependent protein kinase. Adv in Cyclic Nucleotide Res 15:139–192

    Google Scholar 

  • Lincoln TM, Keely SL (1981) Regulation of cardiac cGMP-dependent protein kinase. Biochim Biophys Acta 676:230–244

    PubMed  Google Scholar 

  • Lincoln TM, Dills WL, Corbin JD (1977) Purification and subunit composition of guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung. J Biol Chem 252:4269–4275

    PubMed  Google Scholar 

  • Lincoln TM, Thompson M, Cornwell TL (1988) Purification and characterization of two forms of cyclic GMP-dependent protein kinase from bovine aorta. J Biol Chem 263:17632–17637

    PubMed  Google Scholar 

  • Linnala-Kankkunen A, Mäenpää PH (1981) Phosphorylation of high mobility group protein HMG 14 by a cGMP-dependent protein kinase from avian liver nucleoli. Biochim Biophys Acta 654:287–291

    PubMed  Google Scholar 

  • Lohmann SM, Walter U (1984) Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. Adv Cyclic Nucleotide Protein Phosphorylation Res 18:63–117

    PubMed  Google Scholar 

  • Lohmann SM, Walter U, Miller PE, Greengard P, DeCamilli P (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci USA 78:653–657

    PubMed  Google Scholar 

  • Lohmann SM, Schwoch G, Reiser G, Port R, Walter U (1983) Dibutyryl cAMP treatment of neuroblastoma × glioma hybrid cells results in selective increase in cAMP-receptor protein (R-I) as measured by monospecific antibodies. EMBO J 2:153–159

    PubMed  Google Scholar 

  • MacIntyre DE, Bushfield M, Shaw AM (1985) Regulation of platelet cytosolic free calcium by cyclic nucleotides and protein kinase C. FEBS Lett 188:383–388

    Article  PubMed  Google Scholar 

  • Macphee CH, Harrison SH, Beavo JA (1986) Immunological identification of the major platelet low Km-phosphodiesterase: probable target for antithrombotic agents. Proc Natl Acad Sci USA 83:6660–6663

    PubMed  Google Scholar 

  • Meldolesi J, Pozzan T (1987) Pathways of Ca2+ influx at the plasma membrane: voltage-receptor-and second messenger-operated channels. Exp Cell Res 17:271–283

    Article  Google Scholar 

  • Miglietta LAP, Nelson DL (1988) A novel cGMP-dependent protein kinase from Paramecium. J Biol Chem 263:16096–16105

    PubMed  Google Scholar 

  • Miki N, Keirns JJ, Marcus FR, Freeman J, Bitensky MW (1973) Regulation of cyclic nucleotide concentrations in photoreceptors: an ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc Natl. Acad Sci USA 70:3820–3824

    PubMed  Google Scholar 

  • Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2510

    Article  PubMed  Google Scholar 

  • Morgan JP, Morgan KG (1984) Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret. J Physiol (Lond) 357:539–551

    PubMed  Google Scholar 

  • Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    PubMed  Google Scholar 

  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145–158

    PubMed  Google Scholar 

  • Murad F, Arnold WP, Mittal CK, Braughler JM (1979) Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv Cyclic Nucleotide Res 11:175–204

    PubMed  Google Scholar 

  • Murrell W (1879) Nitroglycerine as a remedy for angina pectoris. Lancet 80–81

    Google Scholar 

  • Nairn AC, Hemming HC Jr, Greengard P (1985) Protein kinases in the brain. Annu Rev Biochem 54:931–976

    Article  PubMed  Google Scholar 

  • Naka M, Nishikawa M, Adelstein RS, Hidaka H (1983) Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature 306:490–492

    Article  PubMed  Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    Article  PubMed  Google Scholar 

  • Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y (1986) Inhibitory action of cGMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun 135:1099–1104

    Article  PubMed  Google Scholar 

  • Nambi P, Whitman M, Gessner G, Aiyar N, Crooke ST (1986) Vasopressin-mediated inhibition of atrial natriuretic-factor-stimulated cGMP accumulation in an established smooth muscle cell line. Proc Natl Acad Sci USA 83:8492–8495

    PubMed  Google Scholar 

  • Needleman P, Greenwald JE (1986) Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood pressure homeostasis. N Engl J Med 314:828–834

    PubMed  Google Scholar 

  • Nieberding M, Waldmann R, Walter U (1987) Prostaglandin-E1-and sodium nitroprusside-regulated protein phosphorylation in platelets. In: Heilmeyer LMG (ed) Signal transduction and protein phosphorylation. Plenum, New York, pp 201–205

    Google Scholar 

  • Nishikawa M, deLanerolle P, Lincoln TM, Adelstein RS (1984) Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase. J Biol Chem 259:8429–8436

    PubMed  Google Scholar 

  • Nonoguchi H, Knepper MA, Manganiello VC (1987) Effects of atrial natriuretic factor on cGMP and cAMP accumulation in microdissected nephron segments from rats. J Clin Invest 79:500–507

    PubMed  Google Scholar 

  • O'Donnell ME, Owen NE (1986a) Role of cyclic GMP in atrial natriuretic factor stimulation of Na+, K+, Cl-cotransport in vascular smooth muscle cells. J Biol Chem 261:15461–15466

    PubMed  Google Scholar 

  • O'Donnell ME, Owen NE (1986b) Atrial natriuretic factor stimulated Na/K/Cl cotransport in vascular smooth muscle cells. Proc Natl Acad Sci USA 83:6132–6136

    PubMed  Google Scholar 

  • O'Grady SM, DeJonge HR, Vaandrager AB, Field AM (1988) Cyclic nucleotide-dependent protein kinase inhibition by H8: effects on ion transport. Am J Physiol 254:C115–C121

    PubMed  Google Scholar 

  • O'Rourke F, Zavoico GB, Feinstein MB (1989) Release of Ca2+ by inositol 1,4,5-trisphosphate in platelet vesicles is not dependent on cyclic AMP-dependent protein kinase. Biochem J 257:715–721

    PubMed  Google Scholar 

  • Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hoffmann F (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 289:576–578

    Article  Google Scholar 

  • Ousterhout JM, Sperelakis N (1987) Cyclic nucleotides depress action potentials in cultured aortic smooth muscle cells. Eur J Pharmacol 114:7–14

    Article  Google Scholar 

  • Paglin S, Takuwa Y, Kamm KE, Stull JT, Gavros H, Rasmussen H (1988) Atrial natriuretic peptide inhibits the agonist-induced increase in extent of myosin light chain phosphorylation in aortic smooth muscle. J Biol Chem 263:13117–13120

    PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  PubMed  Google Scholar 

  • Palvimo J, Linnala-Kakkunen A, Mäenpää PH (1983) Differential phosphorylation of high mobility group protein HMG 14 from calf thymus and avian erythrocytes by a cyclic GMP-dependent protein kinase. Biochem Biophys Res Commun 110:378–382

    Article  PubMed  Google Scholar 

  • Pandey KN, Pavlon SN, Inagami T (1988) Identification and characterization of three distinct atrial natriuretic factor receptors. J Biol Chem 263:13406–13413

    PubMed  Google Scholar 

  • Parks TP, Nairn AC, Greengard P, Jamieson JD (1987) The cyclic nucleotide-dependent phosphorylation of aortic smooth muscle membrane proteins. Arch Biochem Biophys 255:361–371

    Article  PubMed  Google Scholar 

  • Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226

    PubMed  Google Scholar 

  • Paupardin-Tritsch D, Hammond C, Gerschenfeld HM, Nairn AC, Greengard P (1986) cGMP-dependent protein kinase enhances Ca2+ current increase in snail neurons. Nature 323:812–814

    Article  PubMed  Google Scholar 

  • Pfitzer G, Ruegg JC, Flockerzi V, Hofmann F (1982) cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 149:171–175

    Article  PubMed  Google Scholar 

  • Pfitzer G, Hofmann F, DiSalva J, Ruegg JC (1984) cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflugers Arch 401:277–280

    PubMed  Google Scholar 

  • Pollock WK, Sage SO, Rink TJ (1987) Stimulation of Ca2+ efflux from fura-2-loaded platelets activated by thrombin or phorbol myristate acetate. FEBS Lett 210:132–136

    Article  PubMed  Google Scholar 

  • Popescu LM, Panoui C, Hinescu M, Nutu O (1985) The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol 107:393–394

    Article  PubMed  Google Scholar 

  • Radany EW, Gerzer R, Garbers DL (1983) Purification and charcterization of particulate guanylate cyclase from sea urchin spermatozoa. J Biol Chem 258:8346–8351

    PubMed  Google Scholar 

  • Raemaekers L, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273

    PubMed  Google Scholar 

  • Rapoport RM (1986) Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidyl inositol hydrolysis in rat aorta. Circ Res 58:407–410

    PubMed  Google Scholar 

  • Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    PubMed  Google Scholar 

  • Rapoport RM, Draznin MB, Murad F (1982) Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-BrcGMP. Proc Natl Acad Sci USA 79:6470–6474

    PubMed  Google Scholar 

  • Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cGMP-dependent protein phosphorylation. Nature 306:174–176

    PubMed  Google Scholar 

  • Rashatwar SS, Cornwell TL, Lincoln TM (1987) Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 84:5685–5689

    PubMed  Google Scholar 

  • Rasmussen H, Takuwa Y, Park S (1987) Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1:177–185

    PubMed  Google Scholar 

  • Robinson-Steiner AM, Corbin JD (1986) Protein phosphorylation in the heart. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. I. Raven, New York, pp 887–910

    Google Scholar 

  • Rosenthal W, Schultz G (1987) Modulations of voltage-dependent ion channels by extracellular signals. Trends Pharmacol Sci 8:351–354

    Article  Google Scholar 

  • Roskoski R Jr (1983) Assay of protein kinases. Methods Enzymol 99:3–6

    PubMed  Google Scholar 

  • Sage SO, Rink TJ (1987) The kinetics of changes in intracellular calcium concentration in Fura-2-loaded human platelets. J Biol Chem 262:16364–16369

    PubMed  Google Scholar 

  • Sandberg M, Natarajan V, Ronander I, Kalderon D, Walter U, Lohmann SM, Jahnsen T (1989) Molecular cloning and predicted full-length amino acid sequence of the type Iβ isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes in rat. FEBS Lett 255:321–329

    Article  PubMed  Google Scholar 

  • Schlichter DJ, Casnellie JE, Greengard P (1978) Endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature 273:61–62

    Article  PubMed  Google Scholar 

  • Schmidt HHHW, Nau H, Wittfoht W, Gerlach J, Prescher K-E, Klein MM, Niroomand F, Boehme E (1988) Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol 154:213–216

    Google Scholar 

  • Schultz G, Böhme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8 [Suppl 2]:1323–1332

    Article  PubMed  Google Scholar 

  • Schultz JE, Klumpp S (1984) Calcium/calmodulin-regulated guanylate cyclases in the ciliary membranes from Paramecium and Tetrahymena. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:275–283

    PubMed  Google Scholar 

  • Schultz KD, Schultz K, Schultz G (1977) Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265:750–751

    Article  PubMed  Google Scholar 

  • Schultz KD, Böhme E, Kreye VAW, Schultz G (1979) Relaxation of hormonally-stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP. Naunyn Schmiedebergs Arch Pharmacol 306:1–9

    Article  PubMed  Google Scholar 

  • Sellers JR, Adelstein RS (1987) Regulation of contractile activity. In: Boyer PD, Krebs EG (eds) The enzymes, vol 17, 3rd edn. Academic, New York, pp 381–418

    Google Scholar 

  • Shimomura H, Dangott LJ, Garbers DL (1986) Covalent coupling of a Resact analogue to guanylate cyclase. J Biol Chem 261:15778–15782

    PubMed  Google Scholar 

  • Siffert W, Akkerman JWN (1988) Protein kinase C enhances Ca2+-mobilization in human platelets by activating Na+/H+ exchange. J Biol Chem 263:4223–4227

    PubMed  Google Scholar 

  • Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang W-J, Dangott LJ, Chinkers M, Goeddel DW, Garbers DL (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712

    Article  PubMed  Google Scholar 

  • Smith JB, Lincoln, TM (1987) Angiotensin decreases cyclic GMP accumulation produced by atrial natriuretic factor. Am J Physiol 253:C147–C150

    PubMed  Google Scholar 

  • Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85:2800–2804

    PubMed  Google Scholar 

  • Strada SJ, Thompson WJ (1984) Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Protein Phosphorylation 16:1–442

    Google Scholar 

  • Strada SJ, Martin MW, Thompson WJ (1984) General properties of multiple molecular forms of cyclic nucleotide phosphodiesterase in the nervous system. Adv Cyclic Nucleotide Protein Phosphorylation Res 16:13–29

    PubMed  Google Scholar 

  • Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9:87–119

    Article  PubMed  Google Scholar 

  • Supattapone S, Danoff S, Theibert A, Joseph SK, Steiner J, Snyder SH (1988) Cyclic AMP-dependent phosphorylation of a brain inositoltrisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85:8747–8750

    PubMed  Google Scholar 

  • Sutherland EW, Rall TW (1957) The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg2+, and epinephrine or glucagon. J Am Chem Soc 79:3608–3611

    Article  Google Scholar 

  • Takai Y, Kaibuchi K, Sano K, Nishizuka Y (1982) Concentration of calcium-activated, phospholipid-dependent protein kinase activation by adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in platelets. J Biochem 91:403–406

    PubMed  Google Scholar 

  • Takai Y, Kikkawa K, Kaibuchi K, Nishizuka Y (1984) Membrane phospholipid metabolism and signal transduction for protein phosphorylation. Adv Cyclic Nucleotide Protein Phosphorylation Res 18:119–158

    PubMed  Google Scholar 

  • Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984) Guanosine cyclic 3′,5′-phosphate-dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4207–4218

    Article  PubMed  Google Scholar 

  • Tremblay J, Gerzer R, Vinay P, Pank SC, Beliveau R, Hamet P (1985) The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett 181:17–22

    Article  PubMed  Google Scholar 

  • Tremblay J, Gerzer R, Hamet P (1988) cGMP in cell function. Adv Second Messenger Phosphoprotein Res 22:319–383

    PubMed  Google Scholar 

  • Tse J, Mackenzie CW, Donnelly TE (1981) Increase in nuclear cGMP-dependent protein kinase following partial hepatectomy. Life Sci 28:2697–2704

    Article  PubMed  Google Scholar 

  • Vardanis A (1980) A unique cyclic nucleotide-dependent protein kinase. J Biol Chem 255:7238–7243

    PubMed  Google Scholar 

  • Vigne P, Breittmeyer J-P, Duval D, Frelin C, Lazdunski M (1988) The Na+/Ca2+ antiporter in aortic smooth muscle cells. J Biol Chem 263:8070–8083

    Google Scholar 

  • Vrolix M, Raeymakers L, Wuytack F, Hofmann F, Casteels R (1988) cGMP-dependent protein kinase stimulates the plasmalemmal Ca2+-pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J 255:855–863

    PubMed  Google Scholar 

  • Waalas S, Greengard P (1987) Phosphorylation of brain proteins. In: Boyer PD, Krebs EG (eds) The Enzymes, Third Edition, vol 17. Academic Press, New York, pp 285–317

    Google Scholar 

  • Waldmann R, Walter U (1989) Cyclic nucleotide-elevating vasodilators inhibit platelet aggregation at an early step of the activation cascade. Eur J Pharmacol 159:317–320

    Article  PubMed  Google Scholar 

  • Waldmann R, Bauer S, Göbel C, Hofmann F, Jakobs KH, Walter U (1986) Demonstration of cGMP-dependent protein kinase and cGMP-dependent phosphorylation in cell-free extracts of platelets. Eur J Biochem 158:203–210

    Article  PubMed  Google Scholar 

  • Waldmann R, Nieberding M, Walter U (1987) Vasodilator-stimulated protein phosphorylation in platelets is mediated by cAMP-and cGMP-dependent protein kinases. Eur J Biochem 167:441–448

    Article  PubMed  Google Scholar 

  • Waldman SA, Murad F (1988) cGMP synthesis and function. Pharmacol Rev 39:163–196

    Google Scholar 

  • Waldman SA, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259:14332–14334

    PubMed  Google Scholar 

  • Walter U (1981) Distribution of cyclic-GMP-dependent protein kinase in various rat tissues and cell lines determined by a sensitive and specific radioimmunoassay. Eur J Biochem 118:339–346

    PubMed  Google Scholar 

  • Walter U (1984) cGMP-regulated enzymes and their possible physiological functions. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:249–258

    PubMed  Google Scholar 

  • Walter U, Miller P, Wilson F, Menkes D, Greengard P (1980) Immunological distinction between guanosine 3′,5′-monophosphate-dependent and adenosine 3′,5′-monophosphate-dependent protein kinases. J Biol Chem 255:3757–3762

    PubMed  Google Scholar 

  • Walter U, DeCamilli P, Lohmann SM, Miller P, Greengard P (1981) Regulation and cellular localization of cAMP-and cGMP-dependent protein kinases. In: Rosen OM, Krebs EG (eds) Protein phosphorylation. Cold Spring Harbor Conf Cell Prolif 8:141–157

    Google Scholar 

  • Walter U, Nieberding M, Waldmann R (1988) Intracellular mechanism of action of vasodilators. Eur Heart J 9 [Suppl H]:1–6

    Google Scholar 

  • Walton GM, Spiess J, Gill GN (1982) Phosphorylation of high mobility group 14 protein by cyclic nucleotde-dependent protein kinases. J Biol Chem 257:4661–4668

    PubMed  Google Scholar 

  • Watson SP, McConnell RT, Lapetina EG (1984) The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem 259:13199–13203

    PubMed  Google Scholar 

  • Weishaar RE, Burrows SD, Kobylarz DC, Quade MM, Evans DB (1986) Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol 35:787–800

    Article  PubMed  Google Scholar 

  • Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196

    Article  PubMed  Google Scholar 

  • White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian tissues. Biochem Biophys Acta 191:686–697

    PubMed  Google Scholar 

  • Wolfe L, Francis SH, Corbin JD (1989) Properties of a cGMP-dependent monomeric protein kinase from bovine aorta. J Biol Chem 264:4157–4162

    PubMed  Google Scholar 

  • Yada Y, Nagao S, Okano Y, Nozawa Y (1989) Inhibition by cyclic AMP of guanine nucleotide-induced activation of phosphoinoisistide-specific phospholipase C in human platelets. FEBS Lett 242:368–372

    Article  PubMed  Google Scholar 

  • Zavoico GB, Cragoe EJ Jr (1988) Ca2+ mobilization can occur independent of acceleration of Na+/H+ exchange in thrombin-stimulated human platelets. J Biol Chem 263:9635–9639

    PubMed  Google Scholar 

  • Zeilig CE, Langan TA, Glass DB (1981) Sites in histone H1 selectively phosphorylated by guanosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 256:944–1001

    Google Scholar 

  • Zschauer A, van Breemen C, Bühler FR, Nelson MT (1988) Calcium channels in thrombin-activated human platelet membranes. Nature 334:703–705

    Article  PubMed  Google Scholar 

  • Zwiller J, Revel M-O, Malviya AN (1985) Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 260:1350–1353

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. H.-D. Söling, Göttingen (FRG), on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this chapter

Cite this chapter

Walter, U. (1989). Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 113. Reviews of Physiology, Biochemistry and Pharmacology, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032675

Download citation

  • DOI: https://doi.org/10.1007/BFb0032675

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50948-6

  • Online ISBN: 978-3-540-46123-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics