Skip to main content

Electron behavior and magnetic properties of polymer nanocomposites

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 119))

Abstract

In this review article, an attempt has been made to describe the relatively new class of composite systems, polymer nanocomposites. The study of nanocomposites is determined by a number of anomalous properties, exhibited by both the nanoparticles themselves and the systems of such objects immersed in a polymer matrix.

The anomalous character of nanoparticle properties is determined by their medium position between continuous bulk and single atoms. Such particles between 10 to 1000 Å sometimes exhibit a number of quantum size effects that determine anomalous optical and magnetic properties.

The cooperative effects of composites with interacting nanoparticles is another distinctive feature of such systems. These effects occur at the so-called percolation threshold, where the particles begin having contact with one another, whereby the interparticle contacts increase with the increase in their number. The electronic, optical and magnetic properties of composites, which change with the changes in cluster structure, are also discussed in this review.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang Y, Mahler W (1987) Optical Communications 61: 233

    Google Scholar 

  2. Godovski DYu, Volkov AV, Karachevtsev IV Moskvino M. A., Volynskii A. L., and Bakeev N. F. (1993) Polymer Science USSR (Vysokomolekulyarnye Soedineniya) A 35: 1308

    Google Scholar 

  3. Parson T, Cupnick J, Davis M (1988) Phys. Rev. B, 38: 1282

    Google Scholar 

  4. Selby K, Vollmer M, Kresin V, deNeer WA, Knight WD (1989) Phys Rev B 40: 5417

    Google Scholar 

  5. Hass G, Francombe M, Hoffman R (eds) (1975) Physics of thin films, advances in research and development, vol. 8, Academic Press NY

    Google Scholar 

  6. Sheng P, Abeles B (1973), Phys Rev Lett. 31: 44.

    Google Scholar 

  7. Rosetti R, Ellison JL, Gibson JM and Brus LE (1984) J. Chem. Phys., 80: 4464–4469.

    Google Scholar 

  8. Henglein A, Kumar A, Janata J (1986) Chem. Phys. Lett. 132: 133

    Google Scholar 

  9. Arii T, Yatsuya A, Wada N, Mihama K (1978) Jap J Appl Phys, 17: 259–260.

    Google Scholar 

  10. Polikarpov M, Trushin I, Yakimov S (1992) J Magn Magn Mater, 116: 327–374

    Google Scholar 

  11. Morochov I, Trusov L, Lapovok V, Physical phenomena in ultradisperse media Energoatomizdat Publ. (1984) (in Russian).

    Google Scholar 

  12. Brus L. (1986) J Phys Chem. 90: 2555–2560

    Google Scholar 

  13. Wang Y and Herron N (1991) J. Phys. Chem. 95: 525–532

    Google Scholar 

  14. Ruschau GR, Newnham RE, Runt J, Smith BE (1989) Sensors and Actuators B 20: 269

    Google Scholar 

  15. Baral S, Fojtik A, Weller H, Henglein A, J Am Chem Soc 108: 375–378

    Google Scholar 

  16. Wang Y, Suna A, Mahler W et al. (1987) J Chem Phys, 87: 7315

    Google Scholar 

  17. Godovski DYu, Volkov AV, Moskvina MA et al (1994), the results are to be published in Polymer Science USSR A

    Google Scholar 

  18. Sandroff CJ. J. Phys. Chem., in print

    Google Scholar 

  19. Ekimov AI, Onushenko AA (1981) JETP Lett, 34: 346

    Google Scholar 

  20. Astor A, Staut E, J Phys Chem, in print

    Google Scholar 

  21. Nakamura N, Osashi S (1991) Inorg. Chem 30: 1788

    Google Scholar 

  22. Spanhel L and Anderson MA (1990) J Am Chem Soc 112: 2278

    Google Scholar 

  23. Fisher CH, and Henglein A (1989) J Phys Chem, 93: 5578

    Google Scholar 

  24. Fendler JH (1987) Chem. Rev. 87: 877

    Google Scholar 

  25. Xiao Kang and Fendler JH (1991) J Phys Chem. 95: 3716–3723

    Google Scholar 

  26. Stramel RD, Nakamura T and Tomas JK (1986) J Chem Phys Lett. 130: 423

    Google Scholar 

  27. Herron N, Wang Y, Eddy MM et al. (1989) J Am Chem Soc 111: 530 (1989)

    Google Scholar 

  28. Smotkin ES, Lee C, Bard AJ et al. (1989) Chem Phys Lett 152: 265

    Google Scholar 

  29. Dameron CT and Winge DR (1990) Inorg. Chem., 29: 1343

    Google Scholar 

  30. Dameron CT, Reese RN, Mehra RK et al. (1989) Nature 338: 596

    Google Scholar 

  31. Wang Y, Herron N (1988) Inorg Chem, 27: 435

    Google Scholar 

  32. Wang Y, Mahler W (1987) Opt Comm 61: 233

    Google Scholar 

  33. Stahanova SV, Nikonorova NI, Zanegin VD, Lukovkin GM, Volynski AL, Bakeev NF (1992) Polymer Science USSR 34: 133–140

    Google Scholar 

  34. Takahashi M, Miura H (1988) Top Curr Chem 144: 293

    Google Scholar 

  35. Akimov IA, Denisyuk IYu, Meshkov AM (1992) Russian Journal of Optics and Spectroscopy 72: 1026–1031

    Google Scholar 

  36. Hueberts G (1989) Top Curr Chem 145: 455

    Google Scholar 

  37. Tanaka T, Masashi M (1983) J Photog Sci 31: 13

    Google Scholar 

  38. Tanaka T, Ywasaki M (1985) J Imaging Sci 29: 86

    Google Scholar 

  39. Godovski DYu, Thesis, Moscow, 1993

    Google Scholar 

  40. Henglein A (1988) Top Curr Chem. 143: 113

    Google Scholar 

  41. Alivisatos AP, Harris A, Levinos N et al. (1988) J Chem Phys 89: 400

    Google Scholar 

  42. Dance IG, Choy A, Sendder ML (1984) J Am Chem Soc 106: 6285

    Google Scholar 

  43. Herron N, Wang Y, Eckert H (1990) J Am Chem Soc 112: 1322

    Google Scholar 

  44. Rafaeloff R, Tricot Y, Nome F (1985) J Phys Chem, 89: 533–537

    Google Scholar 

  45. Sejwick A, Sandos T (1990) J Phys Chem 92: 3454

    Google Scholar 

  46. Nickolas P, Roget R (1986) J Phys Chem 90: 271

    Google Scholar 

  47. Ozerin AA (1986) JETP Letters 39: 553

    Google Scholar 

  48. Marcus M, Flood W, Steigerwald M, Brus L. (1991) J Phys Chem 95: 1572–1576

    Google Scholar 

  49. Hu YZ, Koch SW, Lindberg M, Peygham Barian N, Pollock EL, Abiaham FF (1990) Phys. Rev. Lett. 64: 1805

    Google Scholar 

  50. Wang Y, Suna A, McHugh J et al. (1990) J Chem Phys, 92: 6927

    Google Scholar 

  51. Hanamyra E (1988) Phys Rev B, 38: 1228

    Google Scholar 

  52. Takagahara T (1987) Phys Rev B, 36: 9293

    Google Scholar 

  53. Migdal AB, Theory of finite Fermy-systems, GRFML Publishing, Moscow (1965) (in Russian).

    Google Scholar 

  54. Selby P. et al. (1991) Phys Rev B 43: 4565

    Google Scholar 

  55. Malov YuA, Zaretski DF (1993) Phys Rev Lett A 177: 379–383

    Google Scholar 

  56. Vollmer M and Kreibig U (1986) Proceedings of the 88th WE-Heraeus-Seminar: Nuclear Concepts in the Study of Atomic Clusters Physics p. 266 Springer Verlag Publ. Berlin Heidelberg New York

    Google Scholar 

  57. Nedeljkovic JM, Nenadovic MT, Micic OI et al. (1986) J Phys Chem, 90: 12–13

    Google Scholar 

  58. Baral S, Fojtic A, Weller H and Henglein A, J Am Chem Soc 108: 375–378

    Google Scholar 

  59. Shklovski BI, Efros AL (1979) Physics of Doped Semiconductors, Nayka Publ., Moscow (in Russian).

    Google Scholar 

  60. Godovski DYu, Chmytin IA, Ponomarenko AA et al. (1994) Synthetic Metals 66: 19–23

    Google Scholar 

  61. Godovski DYu, Sukharev VYa, Volkov AV et al. (1993) Phys Chem Solids 54: 1613

    Google Scholar 

  62. Mott N, Twose R (1978) Conductivity of Noncrystalline Solids, Oxford Press.

    Google Scholar 

  63. Kirkpatrick S. (1961) Rev Mod Phys 10: 707

    Google Scholar 

  64. Godovki D, Sukharev V, Volkov A, Moskvina M, Sensors and Actuators B, in print.

    Google Scholar 

  65. Efros AL and Shklovskii BI (1976) Phys St Sol B, 76: 475–485.

    Google Scholar 

  66. Messinger J, vonRaben U, Chang R et al. (1981) Phys Rev B 24: 649

    Google Scholar 

  67. Qian SX, Snow JB, Chang RK in Laser Spectroscopy VII (1985) p. 204 Hanseh TW, Sher VR (ed) Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  68. Wang Y (1991) J Phys Chem 95: 1119–1124.

    Google Scholar 

  69. Leung KM (1986) Phys Rev A 33: 2461.

    Google Scholar 

  70. Godovski DYu, Volkov AV, Moskvina MA et al. (1994), Polymer Science USSR A, in print.

    Google Scholar 

  71. Yang W (1987) Opt Comm 61: 233

    Google Scholar 

  72. Yang W (1986) Opt Comm 60: 1657

    Google Scholar 

  73. Morup S, Madsen MB, Frank J, Villasden J, Koch CJW (1983) J Magn Magn Mater 40: 163

    Google Scholar 

  74. Morup S (1987) IEEE Trans Magn MAG-23: 3518.

    Google Scholar 

  75. Kundig W, Bommel H, Constabaris G and Lundquist RH (1966) Phys Rev 142: 327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Godovski, D.Y. (1995). Electron behavior and magnetic properties of polymer nanocomposites. In: Thermal and Electrical Conductivity of Polymer Materials. Advances in Polymer Science, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021281

Download citation

  • DOI: https://doi.org/10.1007/BFb0021281

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58502-2

  • Online ISBN: 978-3-540-49015-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics