Skip to main content

Terminological representation, natural language & relation algebra

  • Workshop Contributions
  • Conference paper
  • First Online:
GWAI-92: Advances in Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 671))

Abstract

In this paper I establish a link between Kl-one-based knowledge representation concerned with terminological representation and the work of P. Suppes (1976, 1979, 1981) and M. Böttner (1985, 1989) in computational linguistics. I show how this link can be utilised for the problem of finding adequate terminological representations for given information formulated in ordinary English.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baader, F. and Hollunder, B. (1991), KRIS: knowledge Representation and Inference System: System description, Technical Memo TM-90-03, Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Germany.

    Google Scholar 

  • Borgida, A., Brachman, R. J., McGuinness, D. L. and Resnick, L. A. (1989), classic: A structural data model for objects, Proceedings of the ACM SIGMOD-89 International Conference on Management of Data, Portland, Oreg., pp. 58–67.

    Google Scholar 

  • Böttner, M. (1985), Variable-free semantics for ‘only’ and ‘except', Manuscript, Institut für Kommunikationsforschung und Phonetik, Universität Bonn, Germany.

    Google Scholar 

  • Böttner, M. (1989), Variable-free semantics for anaphora, Manuscript, Department of Mathematics, University of Cape Town, South Africa. To appear in Journal of Philosophical Logic.

    Google Scholar 

  • Böttner, M. (1990). Personal communication.

    Google Scholar 

  • Böttner, M. (1991), Boolean modules and extended relation algebras, Manuscript, Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, California.

    Google Scholar 

  • Böttner, M. (1992), State transition semantics, Theoretical Linguistics 18(2/3), 239–286.

    Google Scholar 

  • Brachman, R. J. (1990), The future of knowledge representation, Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1082–1092. Extended Abstract.

    Google Scholar 

  • Brachman, R. J. and Schmolze, J. G. (1985), An overview of the Kl-one knowledge representation system, Cognitive Science 9(2), 171–216.

    Google Scholar 

  • Brachman, R. J., Gilbert, V. P. and Levesque, H. J. (1985), An essential hybrid reasoning system: Knowledge and symbol level accounts of krypton, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Los Angeles, California, pp. 532–539.

    Google Scholar 

  • Brink, C. (1981), Boolean modules, Journal of Algebra 71(2), 291–313.

    Article  Google Scholar 

  • Brink, C. and Schmidt, R. A. (1992), Subsumption computed algebraically, Computers and Mathematics with Applications 23(2–9), 329–342. Special Issue on Semantic Networks in Artificial Intelligence.

    Article  Google Scholar 

  • Brink, C., Britz, K. and Schmidt, R. A. (1992), Peirce algebras, Technical Report MPI-I-92-229, Max-Planck-Institut für Informatik, Saarbrücken, Germany.

    Google Scholar 

  • Donini, F. M., Lenzerini, M., Nardi, D. and Nutt, W. (1991), The complexity of concept languages, in J. Allen, R. Fikes and E. Sandewall (eds), Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, CA, pp. 151–162.

    Google Scholar 

  • Doyle, J. and Patil, R. S. (1991), Two theses of knowledge representation: Language restrictions, taxonomic classification, and the utility of representation services, AI 48, 261–297.

    Google Scholar 

  • Givan, R., McAllester, D. and Shalaby, S. (1991), Natural language based inference procedures applied to Schubert's steamroller, Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 915–920.

    Google Scholar 

  • Hayes, P. (1977), In defense of logic, International Joint Conference on Artificial Intelligence pp. 559–565.

    Google Scholar 

  • Jónsson, B. (1982), Varieties of relation algebras, Algebra Universalis 15(3), 273–298.

    Google Scholar 

  • Levesque, H. J. and Brachman, R. J. (1987), Expressiveness and tractability in knowledge representation and reasoning, Computational Intelligence 3, 78–93.

    Google Scholar 

  • MacGregor, R. M. (1991), Inside the Loom description classifier, SIGART Bulletin 2(3), 88–92. Special Issue on Implemented Knowledge Representation and Reasoning Systems.

    Google Scholar 

  • Maddux, R. D. (1991a), Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections, in H. Andréka, J. D. Monk and I. Németi (eds), Algebraic Logic, Vol. 54 of Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam, pp. 361–392.

    Google Scholar 

  • Maddux, R. D. (1991b), The origin of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica 50(3/4), 421–455.

    Article  Google Scholar 

  • McAllester, D. and Givan, R. (1989), Natural language syntax and first order inference, Memo 1176, MIT Artificial Intelligence Laboratory. To appear in AIJ.

    Google Scholar 

  • McDermott, D. (1978), Tarskian semantics, or no notation without denotation!, Cognitive Science 2(3), 277–282.

    Article  Google Scholar 

  • Montague, R. (1974), English as a formal language, in R. H. Thomason (ed.), Formal Philosophy: Selected Papers of Richard Montague, Yale University Press, pp. 188–221.

    Google Scholar 

  • Nebel, B. (1988), Computational complexity of terminological reasoning in Back, Artificial Intelligence 34, 371–383.

    Article  MathSciNet  Google Scholar 

  • Nebel, B. and von Luck, K. (1988), Hybrid reasoning in Back, in Z. W. Ras and L. Saitta (eds), Methodologies for Intelligent Systems, Vol. 3, NH, pp. 260–269.

    Google Scholar 

  • Patel-Schneider, P. F. (1987), Decidable, Logic-Based Knowledge Representation, PhD thesis, University of Toronto.

    Google Scholar 

  • Patel-Schneider, P. F. (1989), Undecidability of subsumption in Nikl, Artificial Intelligence 39(2), 263–272.

    Article  Google Scholar 

  • Patel-Schneider, P. F. (1990), Practical, object-based knowledge representation for knowledge-based systems, Information Systems 15(1), 9–19.

    Article  Google Scholar 

  • Schild, K. (1988), Undecidability of subsumption in U, KIT-Report 67, Department of Computer Science, Technische Universität Berlin, Germany.

    Google Scholar 

  • Schmidt, R. A. (1991), Algebraic terminological representation, M.Sc. thesis, Thesis-Reprint TR 011, Department of Mathematics, University of Cape Town, Cape Town, South Africa. Also available as Technical Report MPI-I-91-216, MaxPlanck-Institut für Informatik, Saarbrücken, Germany.

    Google Scholar 

  • Schmidt-Schauß, M. (1989), Subsumption in Kl-one is undecidable, in R. J. Brachman, H. J. Levesque and R. Reiter (eds), Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, CA, pp. 421–431.

    Google Scholar 

  • Schmidt-Schauß, M. and Smolka, G. (1991), Attributive concept description with complements, Artificial Intelligence 48, 1–26.

    Article  Google Scholar 

  • Schmolze, J. G. and Mark, W. S. (1991), The Nikl experience, Computational Intelligence 6, 48–69.

    Google Scholar 

  • Suppes, P. (1973), Semantics of context-free fragments of natural languages, in K. J. J. Hintikka, J. M. E. Moravcsik and P. Suppes (eds), Approaches to Natural Language, Reidel Publ. Co., Dordrecht, Holland, pp. 370–394.

    Google Scholar 

  • Suppes, P. (1976), Elimination of quantifiers in the semantics of natural language by use of extended relation algebras, Rev. Int. de Philosophie 30(3–4), 243–259.

    Google Scholar 

  • Suppes, P. (1979), Variable-free semantics for negations with prosodic variation, in E. Saarinen, R. Hilpinen, I. Niiniluoto and M. P. Hintikka (eds), Essays in Honour of Jaakko Hintikka, Reidel Publ. Co., Dordrecht, Holland, pp. 49–59.

    Google Scholar 

  • Suppes, P. (1981), Direct inference in English, Teaching Philosophy 4, 405–418.

    Google Scholar 

  • Tarski, A. (1941), On the calculus of relations, Journal of Symbolic Logic 6(3), 73–89.

    Google Scholar 

  • Woods, W. A. (1975), What's in a link: Foundations for semantic networks, in Bobrow and Collins (eds), Representation and Understanding: Studies in Cognitive Science, Academic Press, pp. 35–82.

    Google Scholar 

  • Woods, W. A. and Schmolze, J. G. (1992), The Kl-one family, Computers and Mathematics with Applications 23(2–5), 133–177. Special Issue on Semantic Networks in Artificial Intelligence.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Jürgen Ohlbach

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, R.A. (1993). Terminological representation, natural language & relation algebra. In: Jürgen Ohlbach, H. (eds) GWAI-92: Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol 671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0019019

Download citation

  • DOI: https://doi.org/10.1007/BFb0019019

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56667-0

  • Online ISBN: 978-3-540-47626-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics