Skip to main content

The chemistry of carbon fiber formation from polyacrylonitrile

  • Conference paper
  • First Online:
Industrial Developments

Part of the book series: Advances in Polymer Science ((POLYMER,volume 51))

Abstract

The present status of knowledge with regard to the chemical reactions and physicochemical processes, taking place during the transformation of a PAN based precursor fiber to carbon fiber, is discussed.

A large number of precursor fibers has been screened under arbitrarily chosen standard conditions of spinning, stabilization and carbonization. Included are fibers from binary copolymers, terpolymers and blends, as well as fibers containing a variety of additives.

The particular case of the AN/VBr precursor, which permits stabilization in 15–20 minutes, giving carbon fibers with excellent properties (sonic modulus close to 300 GN/m2 tensile strength close to 3000 MN/m2) is described in more detail. Chemical and physicochemical reasons for the particular situation of this precursor are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAM:

Acrylamide

AN:

Acrylonitrile

i-BuMA:

iso-Butylmethacrylate

DMAA:

Dimethylacetamide

DTA:

Differential thermal analysis

ES :

Sonic Modulus

EVE:

Ethylvinylether

FTIR:

Fourier Transform Infrared Spectroscopy

HEMA:

Hydroxyethylmethacrylate

IA:

Itaconic acid

kB :

Melting point depression constant

M:

Monomer

MA:

Methyl acrylate

MAN:

Methacrylonitrile

α-MSty:

α-Methylstyrene

MMA:

Methyl methacrylate

NMAA:

N-methylolacrylamide

PAN:

Polyacrylonitrile

Sty:

Styrene

Tg :

Glass transition temperature

TGA:

Thermogravimetric analysis

Tm :

Melting point

VA:

Vinyl acetate

VBr:

Vinyl bromide

VCl:

Vinyl chloride

VCl2 :

Vinylidene chloride

ηsp :

Specific viscosity

ϱ:

Density

σ:

Tensile strength

8 References

  1. Edison, T. A.: US-Patents 223898 and 470925 (1879)

    Google Scholar 

  2. Hagen, H.: Glasfaserverstärkte Kunststoffe. Springer Verlag, Berlin, Heidelberg 1961

    Google Scholar 

  3. Frazer, A. H.: High Temperature Resistant Fibers. Interscience Publ., New York 1967

    Google Scholar 

  4. Shindo, A.: Studies on Graphite Fibers, Rep. Government Industr. Res. Inst. Osaka, Nr. 317 (1961)

    Google Scholar 

  5. Johnson, J. W., Phillips, L. N. and Watt, W.: Brit. Pat. 1, 110, 791 (1968)

    Google Scholar 

  6. Stuart, H. A.: Die Physik der Hochpolymeren, Vol. 1. Springer, Berlin, Heidelberg 1952

    Google Scholar 

  7. Henrici-Olivé, G. and Olivé, S.: Adv. Polymer Sci. 32, 12 (1979)

    Google Scholar 

  8. Salame, M.: Polymer Preprints (ACS) 8, No. 1, 137 (1967)

    Google Scholar 

  9. Hinrichsen, G.: Angew. Makromol. Chem. 20, 121 (1974)

    Google Scholar 

  10. Flory, P. J.: Trans. Farad. Soc. 51, 848 (1955)

    Google Scholar 

  11. Eby, R. K.: J. Appl. Phys. 34, 2442 (1963)

    Google Scholar 

  12. Frushour, B. G.: Polymer Bull. 4, 305 (1981)

    Google Scholar 

  13. Henrici-Olivé, G. and Olivé, S.: Coordination and Catalysis. Verlag Chemie, Weinheim. New York 1977

    Google Scholar 

  14. McCartney, I. R.: Mod. Plastics 30, 118 (1953); Natl. Bur. Std. Circ. 525, 123 (1953)

    Google Scholar 

  15. Grassie, N. and McNeill, I. C.: J. Polymer Sci. 27, 207 (1958)

    Google Scholar 

  16. Grassie, N. and Hay, J. N.: J. Polymer Sci. 56, 189 (1962)

    Google Scholar 

  17. Grassie, N. and McGuchan, R.: Europ. Polymer J. 7, 1503 (1971)

    Google Scholar 

  18. Grassie, N. in Grassie, N. (ed.): Development in Polymer Degradation, Vol. 1, Chap. 5. Applied Science Publ., London 1977 (cf. earlier references therein).

    Google Scholar 

  19. Kausch, H. H.: Polymer Fracture, p. 85. Springer Verlag, Berlin, Heidelberg, New York 1978

    Google Scholar 

  20. Wöhrle, D.: Adv. Polymer Sci. 10, 35 (1972)

    Google Scholar 

  21. Compagnon, P. L. and Miocque, M.: Ann. Chim. 5, 11 (1970)

    Google Scholar 

  22. Johns, I. B.: Amer. Chem. Soc., Polymer Preprints 5, 239 (1964)

    Google Scholar 

  23. Peebles, L. H. and Brandrup, J.: Makromol. Chem. 98, 189 (1966)

    Google Scholar 

  24. Kargin, V. A., Kabanov, V. A., Zubov, V. P., and Zezin, A. P.: Dokl. Akad. Nauk. S.S.S.R. 139, 605 (1962)

    Google Scholar 

  25. Kabanov, V. A., Zubov, V. P., Kovaleva, V. P. and Kargin, V. A.: J. Polymer Sci. C, 4, 1009 (1964)

    Google Scholar 

  26. Howard, E. G.: U.S. Patent 2, 810, 726 (1957)

    Google Scholar 

  27. Osborn, J. H.: Ph. D. Thesis, University of Minnesota, Diss. Abstr. 19, 2475 (1958)

    Google Scholar 

  28. Johnson, F., Panella, J. P., Carlson, A. A. and Hunneman, D. H.: J. Organ. Chem. 27, 2473 (1962)

    Google Scholar 

  29. Urry, W. H., University of Chicago, private communication

    Google Scholar 

  30. Brandrup, J. and Peebles, L. H.: Macromolecules 1, 64 (1968)

    Google Scholar 

  31. Brandrup, J. Kirby, J. R. and Peebles, L. H.: Macromolecules 1, 59 (1968)

    Google Scholar 

  32. Liepins, R., Campbell, D. and Walker, C.: J. Polymer Sci. A-1, 6, 3059 (1968)

    Google Scholar 

  33. Mullen, P. A. and Orloff, M. K.: Theoret. Chim. Acta 23, 278 (1971)

    Google Scholar 

  34. Egger, K. W. and Cocks, A. T.: Helv. 56, 1516 (1973)

    Google Scholar 

  35. Friedlander, H. N., Peebles, L. H., Brandrup, J. and Kirby, J. R.: Macromolecules 1, 79 (1968)

    Google Scholar 

  36. Grassie, N. and McGuchan, R.: Europ. Polymer J. 7, 1091 (1971)

    Google Scholar 

  37. Petcavich, R. J., Painter, P. C. and Coleman, M. M.: J. Polymer Sci., Polymer Phys. Ed. 17, 165 (1979)

    Google Scholar 

  38. Grasselli, J. E., Wolfram, L. E. and Snavely, M. K. (1979) cited in Petcavich et al. (1979)

    Google Scholar 

  39. Balard, H. and Meybeck, J.: Europ. Polymer J. 14, 225 (1978)

    Google Scholar 

  40. Menikheim, V. C.: U.S. Pat. 3, 817, 700 (1974)

    Google Scholar 

  41. Kubasova, N. A., Din, K. A., Geiderikh, M. A. and Shishkina, M. V.: Polymer Sci. USSR 13, 184 (1971)

    Google Scholar 

  42. Geiderikh, M. A., Din, D. S., Davydov, B. E. and Karpacheva, G. P.: Polymer Sci. USSR, 15, 1391 (1973)

    Google Scholar 

  43. Müller, D. J., Fitzer, E. and Fiedler, A. K.: Proc. Int. Carbon Fibers Conf., Plastics Inst. London, 1971, p. 10

    Google Scholar 

  44. Henrici-Olivé, G. and Olivé, S.: Polymer Bulletin 5, 457 (1981)

    Google Scholar 

  45. Wentworth, G. and Sechrist, J. R.: J. Polymer Sci., Polymer Lett. 9, 539 (1971)

    Google Scholar 

  46. Noh, I. and Yu, H.: J. Polymer Sci. Part B. 4, 721 (1966)

    Google Scholar 

  47. Huron, J. L. and Meybeck, J.: Europ. Polymer J. 13, 523, 553, 699 (1977)

    Google Scholar 

  48. Clarke, A. J. and Bailey, J. D.: Proc. Int. Carbon Fibers Conf., Plastics Inst., London 1974, p. 12

    Google Scholar 

  49. Peebles, L. H. in: H. Mark, N. Gaylord and N. Bikales (Eds.): Encyclopedia of Polymer Science and Technology. Suppl., Vol. 1, p. 2 Wiley, New York 1976

    Google Scholar 

  50. Coleman, M. M. and Petcavich, R. J.: J. Polymer Sci., Polymer Phys. Ed. 16, 821 (1978)

    Google Scholar 

  51. Cook, A. G.: Enamines, Synthesis, Structure and Reactions. Dekker, New York 1969, Ch. 7

    Google Scholar 

  52. Watt, W., Johnson, D. J. and Parker, E.: Proc. Int. Carbon Fibers Conf., Plastics Inst., London, 1974, p. 3

    Google Scholar 

  53. Bell, J. W., and Mulchandani, R. K.: J.S.D.C. 81, 16 (1965)

    Google Scholar 

  54. Hay, J. N.: J. Polymer Sci. A-1, 6, 2127 (1968)

    Google Scholar 

  55. Warner, S. B.: J. Polymer Sci., Polymer Lett. 16, 287 (1978)

    Google Scholar 

  56. Prescott, R. and Ott, I. W.: Germ. Pat. Appl. 1, 925, 489 (1969)

    Google Scholar 

  57. De Vries, H.: On the Elastic and Optical Properties of Cellulose Fibers. Schotanus and Jens, Utrecht 1953

    Google Scholar 

  58. Moseley, W. W.: J. Appl. Polymer Sci. 3, 266 (1960)

    Google Scholar 

  59. Uchida, T. (1971) as cited by Bahl and Manocha60)

    Google Scholar 

  60. Bahl, O. P. and Manocha, L. M.: Carbon 12, 417 (1974)

    Google Scholar 

  61. Warner, S. B., Peebles, L. H. and Uhlmann, D. R.: Oxidative Stabilization of Acrylic Fibers III. Stabilization Dynamics. Industrial Liaison Program Publication, Massachusetts Institute of Technology 1978

    Google Scholar 

  62. Galin, M. and LeRoy M.: Europ. Polymer J. 12, 25 (1976)

    Google Scholar 

  63. Bromley, J.: Proc. Int. Carbon Fibers Conf. Plastics Inst., London 1971, p. 23

    Google Scholar 

  64. Fiedler, A. K., Fitzer, E. and Rozploch, F.: Carbon 11, 426 (1973)

    Google Scholar 

  65. Simitzis, J.: Colloid and Polymer Sci. 255, 948, 1074 (1977)

    Google Scholar 

  66. Simitzis, J.: Ph. D Thesis, University of Karlsruhe, Germany 1975

    Google Scholar 

  67. Manocha, L. M., Bahl, O. P. and Jain, G. C.: Angew. Makromol. Chem. 67, 11 (1978)

    Google Scholar 

  68. Bennet, S. C. and Johnson, D. L.: Carbon 17, 25 (1979)

    Google Scholar 

  69. Crawford, D., cited by Bennett and Johnson68)

    Google Scholar 

  70. Diefendorf, R. J. and Tokarsky, E. W.: The Relationships of Structure to Properties in Graphite Fibers, Technical Report AFML-TR-72-133, Part III, 1975

    Google Scholar 

  71. Marien, B. A.: J. Polymer Sci. Chem. Ed. 17, 425, 435 (1979)

    Google Scholar 

  72. Henrici-Olivé, G. and Olivé, S.: Polymer Bulletin 6, 229 (1982)

    Google Scholar 

  73. Peebles, L. H.: J. Appl. Polymer Sci. 17, 113 (1973)

    Google Scholar 

  74. Murayama, T.: Dynamic Mechanical Analysis of Polymeric Material. Elsevier Scientific Publ. Comp., Amsterdam, Oxford, New York 1978

    Google Scholar 

  75. Stepanyan, A. Ye., Papulov, Yu. G., Krasnov, Ye. P. and Kurakov, G. A.: Vysokomol. Soyed. A-14, 2033 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Henrici-Olivé, G., Olivé, S. (1983). The chemistry of carbon fiber formation from polyacrylonitrile. In: Industrial Developments. Advances in Polymer Science, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017584

Download citation

  • DOI: https://doi.org/10.1007/BFb0017584

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12189-3

  • Online ISBN: 978-3-540-39555-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics