Skip to main content
Log in

Preparation of Porous Forsterite Ceramic Using Waste Silica Fumes by the Starch Consolidation Method

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

The fabrication of porous forsterite samples through starch consolidation casting (SCC), utilizing waste silica fume and calcined magnesia has been performed. Three different forsterite contents of solid loading (56.5, 52 and 48 mass-%) were prepared, calculated in a stoichiometric ratio based on utilizing highly pure calcined magnesia and waste silica fume. In addition, corn starch was used as the source of pore forming that was added to the colloidal suspensions then gelatinized in water at elevated temperature (80°C) followed by pressing and firing at 1400, 1450 and 1500°C/2 h). The effect of corn starch content versus the fired temperatures on the physical properties, linear shrinkage, apparent pore size distribution, phase variation, microstuctural evolution and electrical resistivity as well as the cold crushing strength on the fired ceramics was investigated. Results showed that open porosity ranged from 45.5 to 80.5% and compressive strength ranging from 38.1 to 20.2 MPa was obtained depending on starch content in precursor suspensions and firing temperatures, to develop porous forsterite ceramics having varied thermal and electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shinzou Hayashi, Hiroyuki Suenobu, Hirotake Yamada, Yasushi Noguchi: Ceramic Porous Body And Method for Producing Molded Body. patent No. 20070225149 Sep 27, 2007

  2. Ewais, E.M.M., Ahmed, Y.M.Z., Ameen, A.M.M.: Preparation of porous cordierite ceramic using a silica secondary resource (silica fumes) for dust filtration purposes. J. of Ceram. Proc. Res. 10 (2009) [6] 721–728

    Google Scholar 

  3. Wahsh, M.M.S., Khattab, R.M., Khalil, N.M., Gouraud, F., Huger, M., Chotard, T.: Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites. Mater. and Design 53 (2014) 561–567

    Article  CAS  Google Scholar 

  4. Guzman, I.Y.: Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review). Glass and Ceramics 60 (2003) 280–283

    Article  CAS  Google Scholar 

  5. Ulyanova, T.M., Krutko, N.P., Matrunchik, Yu.V., Dyatlova, E.M., Paemurd, E.S., Paemurd, A.: thermostable composite ceramic based on cordierite. Glass and Ceramics 63 (2006) 411–414

    Article  CAS  Google Scholar 

  6. Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing Routes to Macroporous Ceramics: A Review. J. of the Amer. Ceram. Soc. 89 (2006) 1771–1789

    Article  CAS  Google Scholar 

  7. Khattab, R.M., Wahsh, M.M.S., Khali, N.M.: Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceram. Internat. 38 (2012) 4723–4728

    Article  CAS  Google Scholar 

  8. Lim, B.C., Jang, H.M.: Homogeneous fabrication and densification of cordierite zirconia composites by a mixed colloidal processing route. J. of the Amer. Ceram. Soc. 76 (1993) 1482–1490

    Article  CAS  Google Scholar 

  9. Martín, M.I., Andreol, F., Barbieri, L., Bondioli, F., Lancellotti, I., Rincón, J.Ma., Romero, M.: Crystallisation and microstructure of nepheline-forsterite glass-ceramics. Ceram. Internat. 39 (2013) 2955–2966

    Article  CAS  Google Scholar 

  10. Deer, W.A., Howie, R.A., Zussman, J.: An Introduction to the Rock-Forming Minerals, 2nd ed., Pearson, London (1992)

    Google Scholar 

  11. Tavangarian, F., Emadi, R.: Synthesis of nanocrystalline forsterite (Mg2SiO4) powder by combined mechanical activation and thermal treatment. Mater. Res. Bull. 45 (2010) 388–391

    Article  CAS  Google Scholar 

  12. Swanson, H.E., Targe, E.: Standard X-ray diffraction powder patterns. National Bureau of Standards(US) Circular 359 (1953) 83–86

    Google Scholar 

  13. Tavangarian, F., Emadi, R.: Mechanical activation assisted synthesis of pure nanocrystalline forsterite powder. J. of Alloys and Compounds 485 (2009) 648–652

    Article  CAS  Google Scholar 

  14. Martin, M.H.E., Ober, C.K., Hubbard, C.R., Porter, W.D., Cavin, O.B.: Poly(methacrylate) precursors to forsterite. J. of the Amer. Ceram. Soc. 75 (1992) 1831–1838

    Article  CAS  Google Scholar 

  15. Ni, S., Chou, L., Chang, J.: Preparation and characterization of forsterite (Mg2SiO4) bioceramics. J. of Ceram. Internat. 33 (2007) 83–88

    Article  CAS  Google Scholar 

  16. Mustafa, E., Khalil, N., Gamal, A.: Sintering and microstructure of spinel-forsterite bodies. Ceram. Internat. 28 (2002) 663–667

    Article  CAS  Google Scholar 

  17. Sasikala, T.S., Suma, M.-N., Mohanan, P., Pavithran, C., Sebastian, M.T.: Forsterite based ceramic-glass composites for substrate applications in microwave and millimeter wave communications. J. of Alloys and Compounds 461 (2008) 555–559

    Article  CAS  Google Scholar 

  18. ACI Committee 226: Silica fume in concrete. ACI Mater. J. 84 (1987) 158–166

    Google Scholar 

  19. Pigeon, M., Plante, P., Plante, M.: Air-void stability, part I: influence of silica fume and other parameters. Aci Mater. J. 86 (1989) 482–490

    CAS  Google Scholar 

  20. Wolsiefer, J.: Ultra High Strength Field Placable Concrete with Silica Fume Admixture. Concrete Internat. Design & Construction 6 (1984) 25–31

    CAS  Google Scholar 

  21. Zhong, Y., Shaw, L.L., Manjarres, M., Zawrah, M.F.: Synthesis of silicon carbide nanopowder using silica fume. J. of the Amer. Ceram. Soc. 93 (2010) [10] 3159–3167

    Article  CAS  Google Scholar 

  22. Suri, J., Shaw, L.L., Zawrah, M.F.: Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume. Internat. J. of Applied Ceram. Technol. 2 (2012) 291–303

    Article  CAS  Google Scholar 

  23. Jyothi Suri, Shaw, L.L., Zawrah, M.F.: Synthesis of Carbon-Free Si3N4/SiC Nanopowders using Silica Fume. Ceram. Internat. 37 (2011) 3477–3487

    Article  CAS  Google Scholar 

  24. Khattab, R.M., EL-Rafei, A.M., Zawrah, M.F.: In situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume. Mater. Res. Bull. 47 (2012) 2662–2667

    Article  CAS  Google Scholar 

  25. Bhattacharjee, S., Besra, L., Singh, B.: Effect of additives on the microstructure of porous alumina. J. of the Europ. Ceram. Soc. 27 (2007) 47–52

    Article  CAS  Google Scholar 

  26. Laobuthee, A., Wongkasemjit, S., Traversa, E., Laine, R.M.: MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. J. of the Europ. Ceram. Soc. 20 (2000) 91–97

    Article  CAS  Google Scholar 

  27. Hasin, P., Koonsaeng, N., Laobuthee, A.: Nickel-aluminium complex: a simple and effective precursor for nickel aluminate (NiAl2O4) spinel. Maejo Internat., J. of Sci. and Techno. 2 (2008) 140–149

    CAS  Google Scholar 

  28. Ummartyotin, S., Sangngern, S., Kaewvilai Koonsaeng, N., Manuspiya, H., Laobuthee, A.: Cobalt Aluminate (CoAl2O4) Derived from Co-Al-TEA Complex and Its Dielectric Behaviors. J. of Sustainable Energy and Environment 1 (2009) 31–37

    Google Scholar 

  29. Brindley, G.W.: Role of crystal structure in the dehydration reactions of some layer-type minerals. J. of the Mineralo. Soc. of Japan 5 (1961) 217–237

    Google Scholar 

  30. Brindley, G.W., Ryozo, H.: Mechanism of formation of Jbrsterite and enstatite from serpentine. Article: Transformations of Serpentine. Mineralogical Magazine 35 (1965) 189–195

    Article  CAS  Google Scholar 

  31. Ewais, E.M.M., Ahmed, Y.M.Z., Ameen, A.M.M.: Preparation of porous cordierite ceramic using a silica secondary resource (silica fumes) for dust filtration purposes. J. of Ceram. Proc. Res. 10 (2009) [6] 721–728

    Google Scholar 

  32. Maisarah Mohamed Bazin, Muhd Amirudin Ahmat, Nurhanna Zaidan, Ahmad Fauzi Ismail, Norhayati Ahmad: Effect of Starch Addition on Microstructure and Strength of Ball Clay Membrane. J. Teknologi 69 (2014) [9] 117–120

    Google Scholar 

  33. Chandradass, J., Ki Hyeon Kim, Dongsik Bae, Prasad, K., Balachandar, G., Athisaya Divya, S., Balasubramanian, M.: Starch consolidation of alumina: Fabrication and mechanical properties. J. of the Europ. Ceram. Soc. 29 (2009) 2219–2224

    Article  CAS  Google Scholar 

  34. Shiratori, Y., Tietz, F., Penkalla, H.J., He, J.Q., Shiratori, Y., Stöver, D.: Influence of impurities on the conductivity of composites in the system (3YSZ)1−x−(MgO)x. J. of Power Sources 148 (2005) 32–42

    Article  CAS  Google Scholar 

  35. Badwal, S.P.S., Rajendran, S.: Effect of micro- and nano-structures on the properties of ionic conductors. Solid State Ionics 70(71) (1994) 83–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. H. Sadek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, H.E.H., Khattab, R.M. & Zawrah, M.F. Preparation of Porous Forsterite Ceramic Using Waste Silica Fumes by the Starch Consolidation Method. Interceram. - Int. Ceram. Rev. 65, 174–178 (2016). https://doi.org/10.1007/BF03401166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401166

Keywords

Navigation