Skip to main content
Log in

Interpolation Inequalities, Nonlinear Flows, Boundary Terms, Optimality and Linearization

  • Original Paper
  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the computation of the asymptotic boundary terms in entropy methods applied to a fast diffusion equation with weights associated with Caffarelli-Kohn-Nirenberg interpolation inequalities. So far, only elliptic equations have been considered and our goal is to justify, at least partially, an extension of the carré du champ / Bakry-Emery / Rényi entropy methods to parabolic equations. This makes sense because evolution equations are at the core of the heuristics of the method even when only elliptic equations are considered, but this also raises difficult questions on the regularity and on the growth of the solutions in presence of weights.

We also investigate the relations between the optimal constant in the entropy–en- tropy production inequality, the optimal constant in the information–information production inequality, the asymptotic growth rate of generalized Rényi entropy powers under the action of the evolution equation and the optimal range of parameters for symmetry breaking issues in Caffarelli-Kohn-Nirenberg inequalities, under the assumption that the weights do not introduce singular boundary terms at x = 0. These considerations are new even in the case without weights. For instance, we establish the equivalence of carré du champ and Rényi entropy methods and explain why entropy methods produce optimal constants in entropy–entropy production and Gagliardo-Nirenberg inequalities in absence of weights, or optimal symmetry ranges when weights are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aubin, Problèmes isopéeriméetriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), pp. 573–598.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bakry and M. Émery, Diffusions hypercontractives, in Séeminaire de probabilitées, XIX, 1983/84, vol. 1123 of Lecture Notes in Math., Springer, Berlin, 1985, pp. 177–206.

    MATH  Google Scholar 

  3. D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften au][Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014.

  4. M. F. Betta, F. Brock, A. Mercaldo, and M. R. Posteraro, A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. Appl., 4 (1999), pp. 215–240.

    MathSciNet  MATH  Google Scholar 

  5. A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Váazquez, Asymptotics of the fast diffusion equation via entropy estimates, Archive for Rational Mechanics and Analysis, 191 (2009), pp. 347–385.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vaázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proceedings of the National Academy of Sciences, 107 (2010), pp. 16459–16464.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bonforte, J. Dolbeault, M. Muratori, and B. Nazaret, Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, To appear in Kinet. Relat. Models, (2016). Preprint hal-01279326 & arXiv1602.08319.

    Google Scholar 

  8. -, Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods, To appear in Kinet. Relat. Models, (2016). Preprint hal-01279327 & arXiv: 1602.08315.

    Google Scholar 

  9. M. Bonforte and J. L. Vazquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), pp. 399–428.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), pp. 259–275.

    MathSciNet  MATH  Google Scholar 

  11. J. A. Carrillo, A. Ju¨ngel, P. A. Markowich, G. Toscani, and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), pp. 1–82.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49 (2000), pp. 113–142.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. A. Carrillo and J. L. Váazquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations, 28 (2003), pp. 1023–1056.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), pp. 229–258.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), pp. 847–875.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Denzler and R. J. McCann, Phase transitions and symmetry breaking in singular diffusion, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 6922–6925.

    Article  MathSciNet  MATH  Google Scholar 

  17. -, Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology, Arch. Ration. Mech. Anal., 175 (2005), pp. 301–342.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Dolbeault and M. J. Esteban, A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, J. Numer. Math., 20 (2012), pp. 233–249.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Dolbeault and M. J. Esteban, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27 (2014), pp. 435–465.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Dolbeault, M. J. Esteban, and M. Loss, Symmetry of extremals of functional inequalities via spectral estimates for linear operators, J. Math. Phys., 53 (2012), p. 095204.

    Article  MathSciNet  MATH  Google Scholar 

  21. -, Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, to appear in Inventiones Mathematicae, http://link.springer.com/article/10.1007/s00222-016-0656-6 (2016).

    Google Scholar 

  22. J. Dolbeault, M. J. Esteban, M. Loss, and M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, To appear in C.R. Mathéematique, Preprint hal-01318727 & arXiv:1605.06373, (2016).

    Google Scholar 

  23. J. Dolbeault, M. J. Esteban, M. Loss, and G. Tarantello, On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities, Adv. Nonlinear Stud., 9 (2009), pp. 713–726.

    MathSciNet  MATH  Google Scholar 

  24. J. Dolbeault, M. Muratori, and B. Nazaret, Weighted interpolation inequalities: a perturbation approach, To appear in Mathematische Annalen, Preprint hal-01207009 & arXiv:1509.09127, (2016), pp. 1–34.

    Google Scholar 

  25. J. Dolbeault, B. Nazaret, and G. Savarée, On the Bakry-Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6 (2008), pp. 477–494.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Dolbeault and G. Toscani, Improved interpolation inequalities, relative entropy and fast diffusion equations, Ann. Inst. H. Poincarée Anal. Non Linéeaire, 30 (2013), pp. 917–934.

    Article  MathSciNet  MATH  Google Scholar 

  27. -, Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays, Nonlinear Analysis: Theory, Methods & Applications, 138 (2016), pp. 31–43.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Felli and M. Schneider, A note on regularity of solutions to degenerate elliptic equations of Caffarelli-Kohn-Nirenberg type, Adv. Nonlinear Stud., 3 (2003), pp. 431–443.

    Article  MathSciNet  MATH  Google Scholar 

  29. U. Gianazza, G. Savarée, and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194 (2009), pp. 133–220.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

  31. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), pp. 1061–1083.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Juüngel, Entropy Methods for Diffusive Partial Differential Equations, SpringerBriefs in Mathematics, Springer International Publishing, 2016.

    Google Scholar 

  33. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), pp. 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371: 2012.0346 (2013), pp. 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Savaráe and G. Toscani, The concavity of Réenyi entropy power, IEEE Trans. Inform. Theory, 60 (2014), pp. 2687–2693.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 353–372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault.

Additional information

Research partially supported by the Projects STAB and Kibord (J.D.) of the French National Research Agency (ANR), and by NSF Grant DMS- 1600560 and the Humboldt Foundation (M.L.). Part of this work was done at the Institute Mittag-Leffler during the fall program Interactions between Partial Differential Equations & Functional Inequalities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolbeault, J., Esteban, M.J. & Loss, M. Interpolation Inequalities, Nonlinear Flows, Boundary Terms, Optimality and Linearization. J Elliptic Parabol Equ 2, 267–295 (2016). https://doi.org/10.1007/BF03377405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377405

2010 Mathematics Subject Classication

Key words and phrases

Navigation