Skip to main content
Log in

Continuous Time Random Walk Based Theory for a One-Dimensional Coarsening Model

  • Original Paper
  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this work we propose a master equation describing evolution of the velocity statistics in a one-dimensional coarsening model motivated by the studies of polycrystalline materials. The model postulates the dynamics of a large number of intervals—referred to as domains—on the real line. The length of the intervals changes during evolution and the intervals are removed from the system once their length reaches zero. The coarsening process observed in this model exhibits a number of interesting features, such as nonhomogeneous inter-arrival times between reconfiguration events and development of spatiotemporally self-similar distributions.

We generalize the standard continuous time random walk (CTRW) theory to include time-dependent jumps and subject it to time-dependent temporal rescaling to obtain an accurate non-homogeneous Poisson description of the coarsening process in the one-dimensional model. The theory leads to the evolution equation having self-similar solutions observed in simulations.

The new framework allows to accurately estimate coarsening rates and characterize resulting steady-state distribution for the domain energies described by a power law of a uniformly distributed quantity. Although derived here in the context of a one-dimensional systems, this work naturally extends to higher dimensional CTRW coarsening models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Carr and R. Pego. Self-similarity in a coarsening model in one dimension. Proc. R. Soc. London Ser. A, 436(1898):569–583, 1992.

    Article  MathSciNet  Google Scholar 

  2. W.W. Mullins. A one dimensional nearest neighbor model of coarsening. Technical report, Carnegie Mellon University, Department of Mathematical Sciences, page http://repository.cmu.edu/math, 1991.

    Google Scholar 

  3. W.W. Mullins. The statistical particle growth law in self-similar coarsening. Acta Metall. Mater., 39(9):2081–2090, 1991.

    Article  Google Scholar 

  4. E.A. Lazar and R. Permantle. Coarsening in one dimension: Invariant and asymptotic states. arXiv preprint, page arXiv 1505.07893 [math.PR], 2015.

    Google Scholar 

  5. E.A. Lazar. The evolution of cellular structures via curvature flow. PhD thesis Princeton, 2011.

    Google Scholar 

  6. K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Ta’asan. Towards a statistical theory of texture evolution in polycrystals. SIAM J. of Sc. Comput., 30(6):3150–3169, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  7. W.W. Mullins. The statistical self-similarity hypothesis in grain growth and particle coarsening. J. Appl. Phys., 59:1341–1349, 1986.

    Article  Google Scholar 

  8. W.W. Mullins and J. Vinals. Self-similarity and growth kinetics driven by surface free energy reduction. Acta Metall. Mater., 37(4):991–997, 1989.

    Article  Google Scholar 

  9. R.V. Kohn and F. Otto. Upper bounds on coarsening rates. Commun. Math. Phys., 229:375–95, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  10. R.V. Kohn and X. Yan. Upper bounds on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math., 56:1549–64, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.V. Kohn and X. Yan. Coarsening rates for models of multicomponent phase separation. Interfaces Free Bound, 6:135–49, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Dai and R.L. Pego. Universal bounds on coarsening rates for mean field models of phase transitions. SIAM J. Math. Anal., 37:347–71, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Slepcev. Coarsening in nonlocal interfacial systems. SIAM J. Math. Anal., 40(3):1029–1048, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  14. E.A. Lazar, J.K. Mason, R.D. MacPherson, and D.J. Srolovitz. A more accurate three-dimensional grain growth algorithm. Acta Mater., 59(17):6837–6847, 2011.

    Article  Google Scholar 

  15. J.K. Mason, E.A. Lazar, R.D. MacPherson, and D.J. Srolovitz. Statistical topology of cellular networks in two and three dimensions. Phys. Rev. E, 86(5):051128, 2012.

    Article  Google Scholar 

  16. E. Scalas. The application of continuous-time random walks in finance and economics. Physica A, 362:225–239, 2006.

    Article  MathSciNet  Google Scholar 

  17. F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas. Fractional calculus and continuous time finance II: The waiting time distribution. Physica A, 287:468–481, 2000.

    Article  MATH  Google Scholar 

  18. E. Scalas, R. Gorenflo, and F. Mainardi. Fractional calculus and continuous-time finance. Physica A, 284:376–384, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto. Fractional calculus and continuous-time finance III: The diffusion limit. In: Trends in Mathematics–Mathematical Finance. Birkhauser, 2001.

    Google Scholar 

  20. H.G. Othmer, S.R. Dunbar, and W. Alt. Models of dispersal in biological systems. J. Math. Biol., 26:263–298, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  21. H.G. Othmer and C. Xue. The mathematical analysis of biological aggregation and dispersal: progress, problems, and perspectives. In: Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective. Springer, Heidelberg, 2013.

    Google Scholar 

  22. B.Ph. van Milligen, R. Sanchez, and B.A. Carreras. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws. Phys. Plasmas, 11(5):2272–2285, 2004.

    Article  Google Scholar 

  23. C.N. Angstmann, I.C. Donnelly, and B.I. Henry. Continuous time random walks with reactions forcing and trapping. Math. Model. Nat. Phenom., 8(2):17–27, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  24. C.N. Angstmann, I.C. Donnelly, and B.I. Henry. Pattern formation on networks with reactions: A continuous-time random-walk approach. Phys. Rev. E, 87:032804, 2013.

    Article  Google Scholar 

  25. C.N. Angstmann, I.C. Donnelly, B.I. Henry, T.A.M. Langlands, and P. Straka. Continuous-time random walks on networks with vertex and time-dependent forcing. Phys. Rev. E, 88:022811, 2013.

    Article  Google Scholar 

  26. J. Klafter, A. Blumen, and M.F. Shlesinger. Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35(7):3081–3085, 1987.

    Article  MathSciNet  Google Scholar 

  27. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep., 339:1–77, 2000.

  28. R. Hilfer and L. Anton. Fractional master equtations and fractal time random walks. Phys. Rev. E, 51:R848, 1995.

    Article  Google Scholar 

  29. E. Barkai, R. Metzler, and J. Klafter. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E, 61(1):132–138, 2000.

    Article  MathSciNet  Google Scholar 

  30. F. Mainardi, R. Gorenflo, and E. Scalas. A fractional generalization of the Poisson processes. Vietnam J. of Math., 32:53–64, 2007.

    MathSciNet  MATH  Google Scholar 

  31. E. Scalas, R. Gorenflo, F. Mainardi, and M. Raberto. Revisiting the derivation of the fractional diffusion equation. Fractals, 11:281–289, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  32. C.N. Angstmann, I.C. Donnelly, B.I. Henry, T.A.M. Langlands, and P. Straka. Generalized continuous time random walks, master equations, and fractional fokker-planck equations. SIAM J. of Appl. Math., 75(4):1445–1468, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Scalas, R. Gorenflo, and F. Mainardi. Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E, 69:011107, 2004.

    Article  MathSciNet  Google Scholar 

  34. K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Ta’asan. A new perspective on texture evolution. Int. J. Numer. Anal. and Model., 5:3–108, 2008z.

    MathSciNet  MATH  Google Scholar 

  35. K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta’asan. Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B, 83:134117, 2011.

    Article  MATH  Google Scholar 

  36. E.W. Montroll and G.H. Weiss. Random walks on lattices II. J. Math. Phys., 6(2):167–181, 1965.

    Article  MathSciNet  Google Scholar 

  37. W.W. Montroll and H. Scher. Random walks on lattices, IV: Continuous-time walks and influence of absorbing boundaries. J. Stat. Phys., 9:101–135, 1973.

    Article  Google Scholar 

  38. J. Klafter and R. Silbey. Derivation of the continuous time random walk equation. Phys. Rev. Lett., 44(2):55–58, 1980.

    Article  Google Scholar 

  39. S.M. Ross. Introduction to Probability Models. Academic Press, New York, 2010.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Torrejon.

Additional information

DT was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1356109. ME was partially supported by National Science Foundation grant DMS-1056821.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrejon, D., Emelianenko, M. & Golovaty, D. Continuous Time Random Walk Based Theory for a One-Dimensional Coarsening Model. J Elliptic Parabol Equ 2, 189–206 (2016). https://doi.org/10.1007/BF03377401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377401

2010 Mathematics Subject Classification

Key words and phraes

Navigation