Skip to main content
Log in

Effects of NeemAzal-U on survival, host infestation and reproduction of entomopathogenic and plant-parasitic nematodes: Heterorhabditis bacteriophora and Meloidogyne incognita

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

To determine the effects of neem active ingredients (azadirachtin) on the entomopathogenic nematode Heterorhabditis bacteriophora and the plant-parasitic nematode Meloidogyne incognita, the nematodes were separately treated with different concentrations of NeemAzal-U (i.e., 0.06%, 0.3% and 0.6%) and its blank formulation. Direct exposure of both nematode species to NeemAzal-U for 14 days caused 14% (control mortality = 6.5%) and 44.5% (control mortality = 14.3% ) mortality of H. bacteriophora and M. incognita, respectively. Heterorhabditis bacteriophora kept either in different NeemAzal-U solutions or water did not differ in their parasitisation efficiency of wax moth larvae Galleria mellonella. However, infection rate of M. incognita decreased with increasing neem concentration and a reduction of gall formation of up to 88% was recorded with the highest neem concentration. The number of infective juveniles (IJs) of H. bacteriophora produced per Galleria larva was not influenced by neem treatments of IJs used for host infection. In contrast, the highest neem concentration reduced hatching (85%) and increased mortality (68%) of M. incognita juveniles compared with the water control. It can be concluded that NeemAzal-U can be applied together with ento-mopathogenic nematodes for pest control without detrimental impact on the beneficial nematodes. Furthermore, NeemAzal-U can contribute to the control of M. incognita but only if high concentrations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo-Elyousr KA, Khan Z, El-Morsi Award M & Abedel-Moneim MF, 2010. Evaluation of plant extracts and Pseudomonas spp. for control of root-knot nematode, Meloidogyne incognita on tomato. Nematropica 40, 289–299.

    Google Scholar 

  • Adegbite AA & Adesiyan SO, 2005. Root extracts of plants to control root-knot nematode on edible soybean. World J Agric Sci 1, 18–21.

    Google Scholar 

  • Basu R & Mojumder V, 1998. Effect of aqueous extracts of neem based pesticides on hatching and penetration of juveniles of Meloidogyne incognita in chickpea. Indian J Nematol 28, 210–212.

    Google Scholar 

  • Bollhalder F & Zuber M, 1996. NeemAzal-T/S against Myzus persicae. In: Kleeberg H & Zebitz CPW (Eds.). Practice oriented results on use and production of neem-ingredients and pheromones, Proceedings of the 5th Workshop. Giessen, Germany, Trifolio-M GmbH, 141–145.

  • Campbell LR & Gaugler R, 1991. Role of the sheath in the desiccation tolerance of two entomopathogenic nematodes. Nematologica 37, 324–332.

    Article  Google Scholar 

  • Cooper AF & Van Gundy SD, 1971. Senescence, quiescence and cryptobiosis: In: Zuckermann BM, Mai WF, Rohde RA (Eds.) (1981): Plant parasitic nematodes Vol. II. Academic Press Ltd., New York. 297–318.

    Google Scholar 

  • Coventry E & Allan EJ, 1996. The effect of neem based products on bacterial and fungal growth. In: Kleeberg H & Zebitz CPW (Eds.). Practice oriented results on use and production of neem-ingredients and pheromones, Proceedings of the 5th Workshop. Giessen, Germany, Trifolio-M GmbH, 237–242.

    Google Scholar 

  • Ebssa L, Borgemeister C, Berndt O & Poehling, H-M, 2001. Impact of entomopathogenic nematodes on different soil-dwelling stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), in the laboratory and under semifield conditions. Biocontrol Sci Technol 11, 515–525.

    Article  Google Scholar 

  • Ehlers R-U, 2001. Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56, 523–633.

    Google Scholar 

  • Endo BY & Nickle WR, 1994. Ultrastructure of the buccal cavity region and oesophagus of the insect parasitic nematode, Heterorhabditis bacteriophora. Nematologica 40, 379–398.

    Article  Google Scholar 

  • Fazal M, Bhat Y & Siddiqui A, 1998. Efficacy of neem pesticides on protection of mung bean against Meloidogyne incognita. Z Pflanzenkrankh Pflanzensch — J Plant Dis Protect 105, 520–525.

    CAS  Google Scholar 

  • Glazer I, 1996. Survival mechanisms of entomopathogenic nematodes. Biocontrol Sci Technol 6, 373–378.

    Article  Google Scholar 

  • Hossain MB & Poehling HM, 2006. Effects of a neem-based insecticide on different immature life stages of the leafminer Liriomyza sativae on tomato. Phytoparasitica 34, 360–369.

    Article  CAS  Google Scholar 

  • Hussey RS & Barker KR, 1973. Comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 7, 1025–1028.

    Google Scholar 

  • Ignatowicz S, Mietkiewski R & Pezowicz E, 1998. Compatibility of botanical insecticides with entomopathogenic fungi and entomogenous nematodes. Insect Pathogens and Insect Parasitic Nematodes, IOBC Bull 21, 9–12.

    Google Scholar 

  • Khan I, 2012. Toxicity of botanic and synthetic pesticide residues to citrus psyllid Diaphorina citri Kuwayama and Chrysoperla carnea (Stephens). Pakistan J Zool 44, 197–201.

    Google Scholar 

  • Krishnayya PV & Grewal PS, 2002. Effect of Neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Sci Technol 12, 259–266.

    Article  Google Scholar 

  • Kumar P, Poehling, H-M & Borgemeister C, 2005. Effects of different application methods of neem against sweet potato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. J Appl Entomol 129, 489–497.

    Article  CAS  Google Scholar 

  • Kumar P, Singh HP & Poehling H-M, 2010. Effects of neem on adults of Eretmocerus warrae (Hym., Aphelinidae), a parasitoid of Bemisia tabaci (Hom., Aleyrodidae) in tropical horticulture systems. J Plant Dis Protect 117, 273–277.

    Article  Google Scholar 

  • Kumar S & Khanna AS, 2006. Effect of neem-based products on the root-knot nematode, Meloidogyne incognita, and growth of tomato. Nematol Mediterr 34, 141–146.

    Google Scholar 

  • Lee DJ & Atkinson HJ, 1976. Physiology of nematodes. London, UK, MacMillian Press Ltd.

    Book  Google Scholar 

  • Mahmoud FM, 2007. Combining the botanical insecticides NSK Extract, NeemAzal T 5%, Neemix 4.5% and the entomopathogenic nematode Steinernema feltiae N33 to control the peach fruit fly, Bactrocera zonata (Saunders). Plant Prot Sci 43, 19–25.

    Google Scholar 

  • Mironova MK & Khorkhordin EG, 1996. Effect of NeemAzal-T/S ON Tetranynchus urticae Koch. In: Kleeberg H, Zebitz CPW (Eds.). Practice oriented results on use and production of neem-ingredients and pheromones. Proceedings of the 5th Workshop. Trifolio-M GmbH, Giessen. 129–137.

    Google Scholar 

  • Mojumder V, Kamra A & Dureja P, 2002. Effect of neem extracts on activity and mortality of second-stage juveniles of Meloidogyne incognita. Nematol Mediterr 30, 83–84.

    Google Scholar 

  • Negrisoli AS Jr., Garcia MS & Barbosa Negrisoli CRC, 2010. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Prot 29, 545–549.

    Article  Google Scholar 

  • Rovesti L & Deseö KV, 1990. Compatibility of chemical pesticides with the entomopathogenic nematode, Steinernema carpocapsae Weiserand S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 36, 237–245.

    Article  Google Scholar 

  • Sattar S, Farmanullah, Saljoqi S, Arif M, Sattar H & Quazi JI, 2011. Toxicity of some new insecticides against Trichogramma chilonis (Hymenoptera: Trichogrammatidae) under laboratory and extended laboratory conditions. Pakistan J Zool 43, 1117–1125.

    CAS  Google Scholar 

  • Spollen KM & Isman MB, 1996. Acute and sublethal effects of a neem insecticide on the commercial biological control agents Phytoseiulus persimilis and Amblyseius cucumeris (Acari: Phytoseiidae) and Aphidoletes aphidimyza (Diptera: Cecidomyiidae). J Econ Entomol 89, 1379–1386.

    Article  CAS  Google Scholar 

  • Stark JD, 1996. Entomopathogenic nematodes (Rhabditida: Steinernematidae): Toxicity of neem. J Econ Entomol 89, 68–73.

    Article  CAS  Google Scholar 

  • Thöming G, 2005. Soil application of neem products in IPM: Controlling thrips (Thysanoptera: Thripidae) in vegetable crops. Doctoral thesis, University of Hanover, Germany, 119 pp.

    Google Scholar 

  • Thöming G, Draeger G & Poehling H-M, 2006. Soil application of azadirachtin and 3-tigloyl-azadirachtol to control the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae): translocation and persistence in bean plants. Pest Manage Sci 62, 759–767.

    Article  Google Scholar 

  • White GF 1927. A method for obtaining infective nematode larvae from cultures. Science 66, 302–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Michael Poehling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, J., Ebssa, L. & Poehling, HM. Effects of NeemAzal-U on survival, host infestation and reproduction of entomopathogenic and plant-parasitic nematodes: Heterorhabditis bacteriophora and Meloidogyne incognita. J Plant Dis Prot 119, 142–151 (2012). https://doi.org/10.1007/BF03356433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356433

Key words

Navigation