Skip to main content
Log in

Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals

Korrelation von O-H-Streckfrequenzen und O-R…O-Wasserstoffbrückenlängen in Mineralen

  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

A correlation of O-H stretching frequencies (from infrared spectroscopy) with O…O and R…O bond lengths (from structural data) of minerals was established. References on 65 minerals yielded 125 data pairs for the d(O…0)-v correlation; due to rare or inaccurate data on proton positions, only 47 data pairs were used for the d(H…O)-v correlation. The data cover a wide range of wavenumbers from 1000 to 3738 cm−1 and O…O distances from 2.44 to 3.5 Å. They originate from silicates, (oxy)hydroxides, carbonates, sulfates, phosphates, and arsenates with OH, H2O, or even H3O 2 units forming very strong to very weak H bonds. The correlation function was established in the form v(cm−1) = 3592-304 · 109 · exp(-d(O…O)/0.1321), R 2 = 0.96. Because of deviations from ideal straight H bonds, i.e. bent or bifurcated geometry, dynamic proton behavior, but also due to factor group splitting and cationic effects, data scatter considerably around the regression line. The trends of previous correlation curves and of theoretical considerations were confirmed.

Zusammenfassung

Eine Korrelation zwischen O-H-Streckfrequenzen (aus IR-spektroskopischen Messungen) und O…O- sowie H…O-Bindungslängen (aus Strukturdaten) von Mineralen wurde erstellt. Literaturzitate über 65 Minerale lieferten 125 Datenpaare für die d(O…O)-v-Korrelation. Aufgrund seltener oder ungenauer Daten tiber Wasserstoffpositionen konnten nur 47 Datenpaare für die d(H…0)-v-Korrelation verwendet werden. Die Daten decken einen weiten Wellenzahlbereich von 1000 bis 3738 cm−1 und O…O-Bindungslängen von 2.44 bis 3.5 Å ab. Sie entstammen Silikaten, (Oxi)hydroxiden, Karbonaten, Sulfaten, Phosphaten und Arsenaten mit OH, H2O, oder sogar H3O 2 Gruppen, welche sehr starke bis sehr schwache Wasserstoffbrücken ausbilden. Die Korrelationsfunktion wurde in der Form v(cm−1) = 3592-304 · 109 · exp(-d(O…O)/0.1321), R 2 = 0.96 erstellt. Aufgrund von Abweichungen von idealen gestreckten H-Brücken, d.h. geknickter oder gegabelter Geometrie, dynamischem Verhalten der Protonen, aber auch wegen Faktorgruppenaufspaltung und Kationeneffekten, streuen die Daten beachtlich urn die Regressionslinie. Die Trends früherer Korrelationskurven und theoretischer Berechnungen wurden bestätigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emsley J (1980) Chem Soc Rev 9: 91

    Article  CAS  Google Scholar 

  2. Rundle RE, Parasol M (1952) J Chem Phys 20: 1487

    Article  CAS  Google Scholar 

  3. Bellamy LJ, Owen AJ (1969) Spectrochim Acta A25: 329

    Article  Google Scholar 

  4. Nakamoto K, Margoshes M, Rundle RE (1955) JAm Chem Soc 77: 6480

    Article  CAS  Google Scholar 

  5. Lutz HD (1995) Struct Bond 82: 85

    CAS  Google Scholar 

  6. Novak A (1974) Struct Bond 18: 177

    CAS  Google Scholar 

  7. Mikenda W (1986) J Mol Struct 147: 1

    Article  CAS  Google Scholar 

  8. Bell DR, Rossman GR (1992) Contrib Mineral Petrol 111: 161

    Article  CAS  Google Scholar 

  9. Libowitzky E, Armbruster T (1995) Am Mineral 80: 1277

    CAS  Google Scholar 

  10. Libowitzky E, Rossman GR (1996) Am Mineral 81: 1080

    CAS  Google Scholar 

  11. ICSD 98/1 Inorganic Crystal Structure Database, FIZ Karlsruhe — Gmelin Institute

  12. Libowitzky E, Schultz AJ, Young DM (1998) Z Kristallogr 213: 659

    Article  CAS  Google Scholar 

  13. Moenke H (1966) Mineralspektren II. Akademie-Verlag, Berlin

    Google Scholar 

  14. Farmer VC (ed) (1974) The Infrared Spectra of Minerals. Miner Soc, London

    Google Scholar 

  15. Jones GC, Jackson B (1993) Infrared Transmission Spectra of Carbonate Minerals. Chapman & Hall, London

    Book  Google Scholar 

  16. Salisbury JW, Walter LS, Vergo N, D'Aria DM (1992) Infrared (2.1–25 μm) Spectra of Minerals. Johns Hopkins, London

    Google Scholar 

  17. Libowitzky E, Rossman GR (1996) Phys Chem Minerals 23: 319

    Article  CAS  Google Scholar 

  18. Schmidt M, Lutz HD (1993) Phys Chem Minerals 20: 27

    Article  CAS  Google Scholar 

  19. Nyfeler D, Hoffmann C, Armbruster T, Kunz M, Libowitzky E (1997) Am Mineral 82: 841

    CAS  Google Scholar 

  20. Zobetz E, Zemann J, Heger G, Voellenkle H (1979) Anz Österr Akad Wiss, Math-Naturwiss Kl 116: 145

    Google Scholar 

  21. Shinoda K, Aikawa N (1994) Phys Chem Minerals 21: 24

    Article  CAS  Google Scholar 

  22. Lager GA, Armbruster T, Faber J (1987) Am Mineral 72: 756

    CAS  Google Scholar 

  23. Rossman GR, Aines RD (1991) Am Mineral 76: 1153

    CAS  Google Scholar 

  24. Armbruster T, Libowitzky E, Kunz M, Miletich R, Gutzmer J (1999) Am Mineral 84 (in preparation)

    Google Scholar 

  25. Foit FF Jr, Phillips MW, Gibbs GV (1973) Am Mineral 58: 909

    CAS  Google Scholar 

  26. Hazen RM, Au AY, Finger LW (1986) Am Mineral 71: 977

    CAS  Google Scholar 

  27. Hanscom RH (1975) Acta Cryst B31: 780

    Article  CAS  Google Scholar 

  28. Fransolet A-M (1978) Bull Minéral 101: 548

    CAS  Google Scholar 

  29. Ståhl K, Kvick Å, Smith JV (1988) J Sol State Chem 73: 362

    Article  Google Scholar 

  30. Koch-Müller M, Langer K, Beran A (1995) Phys Chem Minerals 22: 108

    Article  Google Scholar 

  31. Libowitzky E, Armbruster T (1996) Am Mineral 81: 9

    CAS  Google Scholar 

  32. Libowitzky E, Rossman GR (1997) Eur J Mineral 9: 793

    Article  CAS  Google Scholar 

  33. Libowitzky E, Kohler T, Armbruster T, Rossman GR (1997) Eur J Mineral 9: 803

    Article  CAS  Google Scholar 

  34. Ghose S, Hewat AW, Marezio M (1984) Phys Chem Minerals 11: 67

    Article  CAS  Google Scholar 

  35. Beran A, Bittner H (1974) Tscherm Min Petr Mitt 21: 11

    Article  CAS  Google Scholar 

  36. Swinnea JS, Steinfink H, Rendon Diaz Miron LE, de la Vega SE (1981) Am Mineral 66: 428

    CAS  Google Scholar 

  37. Beran A (1971) Tscherm Min Petr Mitt 16: 281

    Article  CAS  Google Scholar 

  38. Downs JW, Ross FK (1987) Am Mineral 72: 979

    CAS  Google Scholar 

  39. Nozik YZ, Kanepit VN, Fykin LY, Makarov YS (1978) Geochem Intemat 15: 66

    Google Scholar 

  40. Comodi P, Zanazzi PF (1997) Am Mineral 82: 61

    CAS  Google Scholar 

  41. Takéuchi Y, Kudoh Y (1977) Z Kristallogr 146: 281

    Article  Google Scholar 

  42. Hammer VMF, Libowitzky E, Rossman GR (1998) Am Mineral 83: 569

    CAS  Google Scholar 

  43. Jacobsen SD (1998) MS Thesis, University of Colorado, Boulder

    Google Scholar 

  44. Armbruster T, Libowitzky E, Diamond L, Auemhammer M, Bauerhansl P, Hoffmann C, Irran E, Kurka A, Rosenstingl H (1995) Miner Petrol 52: 113

    Article  CAS  Google Scholar 

  45. Artioli G, Rinaldi R, Ståhl K, Zanazzi PF (1993) Am Mineral 78: 762

    CAS  Google Scholar 

  46. Aurisicchio C, Grubessi O, Zecchini P (1994) Can Mineral 32: 55

    CAS  Google Scholar 

  47. Wallace JH, Wenk HR (1980) Am Mineral 65: 96

    CAS  Google Scholar 

  48. Aines RD, Rossman GR (1984) Am Mineral 69: 319

    CAS  Google Scholar 

  49. Armbruster T (1999) Am Mineral 84: 92

    CAS  Google Scholar 

  50. Hawthorne FC, MacDonald DJ, Bums PC (1993) Am Mineral 78: 265

    CAS  Google Scholar 

  51. Gonzalez-Carreño T, Fernández M, Sanz J (1988) Phys Chem Minerals 15: 452

    Article  Google Scholar 

  52. Yang H-X, Evans BW (1996) Am Mineral 81: 1117

    CAS  Google Scholar 

  53. Gottschalk M, Andrut M (1998) Phys Chem Minerals 25: 101

    Article  CAS  Google Scholar 

  54. Urusov VS, Zver'kova ON, Yamnova NA, Polosin AV (1987) Vestnik Moskovskogo Universiteta, Geologiya 1987: 43

    Google Scholar 

  55. Skogby H, Rossman G (1991) Phys Chem Minerals 18: 64

    Article  CAS  Google Scholar 

  56. Perdikatsis B, Burzlaff H (1981) Z Kristallogr 156: 177

    Article  CAS  Google Scholar 

  57. Lee JH, Guggenheim S (1981) Am Mineral 66: 350

    CAS  Google Scholar 

  58. Gregorkiewitz M, Lebech B, Mellini M, Viti C (1996) Am Mineral 81: 1111

    CAS  Google Scholar 

  59. El Sayed K, Heiba ZK, Abdel Rahman AM (1990) Cryst Res Tech 25: 305

    Article  Google Scholar 

  60. Catti M, Ferraris G, Hull S, Pavese A (1994) Eur J Mineral 6: 171

    Article  CAS  Google Scholar 

  61. Rayner JH (1974) Min Mag 39: 850

    Article  CAS  Google Scholar 

  62. Hazen RM, Burnham CW (1973) Am Mineral 58: 889

    CAS  Google Scholar 

  63. Redhammer GJ, Beran A, Dachs E, Amthauer G (1993) Phys Chem Minerals 20: 382

    Article  CAS  Google Scholar 

  64. Ferraris G, Jones DW, Yerkess J (1972) Z Kristallogr 135: 240

    Article  CAS  Google Scholar 

  65. Libowitzky E, Rossman GR (1997) Am Mineral 82: 1111

    CAS  Google Scholar 

  66. Stuckenschmidt E, Joswig W, Baur WH (1993) Phys Chem Minerals 19: 562

    Article  CAS  Google Scholar 

  67. Hofmeister AM, Cynn H, Burnley PC, Meade C (1999) Am Mineral 84: 454

    CAS  Google Scholar 

  68. Szytula A, Burewicz A, Dimitrijewic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W (1968) Phys Stat Sol 26: 429

    Article  CAS  Google Scholar 

  69. Libowitzky E (1996) Mitt Osterr Miner Ges 141: 134

    Google Scholar 

  70. Hill RJ (1979) Phys Chem Minerals 5: 179

    Article  CAS  Google Scholar 

  71. Kohler T, Armbruster T, Libowitzky E (1997) J Solid State Chem 133: 486

    Article  CAS  Google Scholar 

  72. Christoph GG, Corbato CE, Hofmann A, Tettenhorst RT (1979) Clays Clay Miner 27: 81

    Article  CAS  Google Scholar 

  73. Zigan F, Rothbauer R (1967) N Jb Miner Mh 1967: 137

    Google Scholar 

  74. Saalfeld H, Wedde M (1974) Z Kristallogr 139: 129

    Article  CAS  Google Scholar 

  75. Pertlik F (1986) Mitt Osterr Miner Ges 131: 7

    CAS  Google Scholar 

  76. Zigan F, Schuster HD (1972) Z Kristallogr 135: 416

    Article  CAS  Google Scholar 

  77. Zigan F, Joswig W, Schuster HD (1977) Z Kristallogr 145: 412

    Article  CAS  Google Scholar 

  78. Giester G (1989) Z Kristallogr 187: 239

    Article  CAS  Google Scholar 

  79. Beran A, Giester G, Libowitzky E (1997) Mineral Petrol 61: 223

    Article  CAS  Google Scholar 

  80. Hawthorne FC, Groat LE, Eby RK (1989) Can Mineral 27: 205

    CAS  Google Scholar 

  81. Helliwell M, Smith JV (1997) Acta Cryst C53: 1369

    CAS  Google Scholar 

  82. Menchetti S, Sabelli C (1976) N Jb Miner Mh 1976: 406

    Google Scholar 

  83. Okada K, Hirabayashi J, Ossaka J (1982) N Jb Miner Mh 1982: 534

    Google Scholar 

  84. Schlatti M, Sahl K, Zemann A, Zemann J (1970) Tscherm Min Petr Mitt 14: 75

    Article  CAS  Google Scholar 

  85. Pedersen BF, Semmingsen D (1982) Acta Cryst B38: 1074

    Article  CAS  Google Scholar 

  86. Hughes JM, Cameron M, Crowley KD (1989) Am Mineral 74: 870

    CAS  Google Scholar 

  87. Engel G, Klee WE (1972) J Solid State Chem 5: 28

    Article  CAS  Google Scholar 

  88. Giuseppetti G, Tadini C (1983) N Jb Miner Mh 1983: 410

    Google Scholar 

  89. Cid-Dresdner H (1965) Z Kristallogr 121: 87

    Article  CAS  Google Scholar 

  90. Shoemaker GL, Anderson JB, Kostiner E (1981) Am Mineral 66: 169

    CAS  Google Scholar 

  91. Kniep R, Mootz D, Vegas A (1977) Acta Cryst B33: 263

    Article  CAS  Google Scholar 

  92. Salvador Salvador P, Fayos J (1972) Am Mineral 57: 36

    CAS  Google Scholar 

  93. Hawthorne FC (1976) Acta Cryst B32: 2891

    Article  CAS  Google Scholar 

  94. Toman K (1977) Acta Cryst B33: 2628

    Article  CAS  Google Scholar 

  95. Beckenkamp K, Lutz HD (1992) J Mol Struct 270: 393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libowitzky, E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatshefte fuer Chemie 130, 1047–1059 (1999). https://doi.org/10.1007/BF03354882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354882

Keywords

Navigation