Skip to main content
Log in

Neuroendocrine-thymus interactions. I. In vitro modulation of thymic factor secretion by thyroid hormones

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Several in vivo experimental and clinical studies suggest that the production of thymic hormones, such as thymulin (Zn-FTS), is modulated by thyroid hormones. It was not determined in these studies, however whether such modulation is exerted directly on the thymic epithelial cells which synthesize and secrete thymic hormones. In order to discriminate between direct and indirect modulation, the effect of thyroid hormones on the in vitro production of thymulin by whole thymic organ culture, as detected by the rosette inhibition assay, has been investigated. Donors of thymuses were young 6N-propyl-2 thyouracil (PTU)-treated hypothyroid Balb/c mice and normal littermates. Thymuses from hypothyroid mice were shown to produce concentrations in vitro nearly undetectable of thymic hormone, when compared to thymuses from normal mice. The in vitro addition of triiodothyronine (T3) caused a complete recovery of the thymic hormone production by thymuses from hypothyroid mice and an increased synthesis even by normal thymuses over control values. The complete blockade of in vitro thymic hormone production with cycloheximide, which inhibits mRNA and protein synthesis but not thyroid hormone permissive actions, suggests that the T3 induced increment of thymic hormone level in the supernatant is due to de novo synthesis. Furthermore, the number of thymulin-producing cells, as detected by immunofluorescence using a specific antithymulin monoclonal antibody, which is quite low in thymuses from hypothyroid mice, is completely regained after in vitro incubation with T3. These findings support the idea that the modulation of thyroid hormones on thymic endocrine activity is directly exerted at thymic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldstein A.L, Low T.L.K., McAdoo M., McClure J., Thurman G.B., Lay C.Y., Chang D., Wang S.S., Harvey C., Ramel A.H., Meinhofer J. Thymosin α1. Isolation and sequence analysis of an immunologically active thymic polypeptide. Proc. Natl. Acad. Sci. USA 74: 711, 1977.

    Article  Google Scholar 

  2. Goldstein G., Sheid M., Hammertring U., Bose E.A., Schlesinger D.H., Niall H.D. Isolation of a polypeptide that has lympocytes-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 72: 11, 1976.

    Article  Google Scholar 

  3. Bach J.F., Dardenne M., Pleau J.M., Bach A.M. Isolation, biochemical characteristic and biological activity of a circulating thymic hormone in the mouse and in the human. Ann. N.Y. Acad. Sci. 249: 186, 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Dardenne M., Pleau J.M., Nabama B., Lefancier P., Denien M., Choay J., Bach J.F. Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc. Natl. Acad. Sci. USA. 79: 5370, 1982.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Goldstein A.L. Thymic hormones and lymphokines. Ptenum Press, New York, 1984.

    Book  Google Scholar 

  6. Savino W., Dardenne M. Thymic hormone-containing cells. VI Immunohisto-logic evidence for the simultaneous presence of thymulin, thymopoietin and thymosin α1 in normal and pathological human thymuses. Eur. J. Immunol. 14: 987, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Lewis V.M., Twomey J.J., Bealmear P., Goldstein G., Good R.A. Age, thymic involution and circulating thymic hormone activity. J. Clin. Endocrinol. Metab. 47: 145, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Fabris N., Mocchegiani E., Amadio L., Zanotti M., Licastro F., Franceschi C. Thymic hormone deficiency in normal ageing and Down’s syndrome: is there a primary failure of the thymus? Lancet 1: 983, 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Fabris N., Piantanelli L. Thymus-neuroendocrine interactions during development and aging. In: Adelman R.C. Roth G.S. (Eds.), Hormones and aging. C.R.C. Press, Palm Beach, 1982, p. 167.

    Google Scholar 

  10. Fabris N., Mocchegiani E. Endocrine control of serum thymic factor in young-adult and old mice. Cell. Immunol. 91: 325, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Fabris N., Muzzioli M., Mocchegiani E. Recovery of age-dependent immunological deterioration in Balb/c mice by short-term treatment with L-thyroxine. Mech. Ageing Develop. 18: 327, 1982.

    Article  CAS  Google Scholar 

  12. Fabris N., Mocchegiani E., Mariotti S., Pacini F., Pinchera A. Thyroid function modulates thymus endocrine activity. J. Clin. Endocrinol. Metab. 62: 474, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Fabris N., Mocchegiani E., Mariotti E., Pacini F., Pinchera A. Thymulin deficiency and low T-3 syndrome in infants with low-birth-weight syndromes. J. Clin. Endocrinol. Metab. 65: 247, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Savino W., Dardenne M. Thymic hormone containing cells. IV. Fluctuations in the thyroid hormone levels in vivo can modulate the secretion of thymulin by the epithelial cells of young mouse thymus. Clin. Exp. Immunol. 55: 629, 1984.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Fisher D.A., Klein A.H. Thyroid development and disorders of thyroid function in the newborn. N. Engl. J. Med. 304: 702, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson L.G., Studzinski G.P. Autoradiographic studies of the effect of inhibitors of protein synthesis on RNA synthesis in HeLa cells. Exp. Cell. Res. 52: 408, 1968.

    Article  PubMed  CAS  Google Scholar 

  17. Oppenheimer J.H., Schwartz H.L., Mariash C.N., Kinlaw W.B., Wong N.C.W., Freake H.C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr. Rev. 8: 288, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Bach J.F., Bach M.A., Blanot D., Bricas E., Charreire J., Dardenne M., Fournier C., Pleau J.M. Thymic serum factor (FTS). Bull. Inst. Pasteur 76: 325, 1978.

    CAS  Google Scholar 

  19. Meisami E. Complete recovery of growth deficits after reversal of PTU-induced postnatal hypothyroidism in the femal rat: a model for catch-up growth. Life Sci 34: 1487, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Mocchegiani E. Boemi M., Fumelli P., Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes 38: 932, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Shiota K., Yoshida K., Kawase M., Masaki T., Sudo K. Acute effect of triiodothyronine on the dynamics of thyrotropin from a profused arteria pituitary cells. Mol. Cell. Endocrinol. 41: 79, 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Zar J.H. Biostatistical analysis. Prentice-Hall, N.J., 1984.

    Google Scholar 

  23. Sheiff J.M., Cordier A.C., Hammount S. Epithelial cell proliferation in thymic hyperplasia induced by triiodothyronine. Clin. Exp. Immunol. 27: 216, 1977.

    Google Scholar 

  24. Seeling S., Jump D.B., Towle H.C., Liaw C., Mariash C.N., Schwartz H.L., Oppenheimer H.J. Paradoxical effects of cycloheximide on the ultra-rapid induction of two hepatic mRNA sequences by triiodothyronine (T3). Endocrinology 110: 671, 1982.

    Article  Google Scholar 

  25. Dardenne M., Savino W., Duval D., Kaiserlian D., Hassid J., Bach J.F. Thymic hormone-containing cells. VI. Adrenals and gonads control the in vivo secretion of thymulin and its plasmatic inhibitor. J. Immunol. 136: 1303, 1986.

    PubMed  CAS  Google Scholar 

  26. Sterling K. Thyroid hormone action at the cell level. N. Engl. J. Med. 300: 117; 173 (in two parts) 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Ong M.L, Malkin D.G., Malkin A. Alteration of lymphocytes reactivities by thyroid hormones. Int. J. Immunopharmacol. 8: 755, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Provinciall M., Muzzioli M., Fabris N. Influence of lymphokines and thyroid hormones on natural killer activity. In: Pinchera A., Insber S.K., McKenzie J.M., Fenzi G.F. (Eds.) Thyroid Autoimmunity. Plenum Press, New York, 1987, p. 509.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Italian Natl. Res. Council through “Targeted Project on Preventive Medicine”, to N.F. (Grant No. 85.00555.56, 86.01765.56) and Health Ministery targeted Program on “Geriatric Pharmacology” through INRCA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocchegiani, E., Amadio, L. & Fabris, N. Neuroendocrine-thymus interactions. I. In vitro modulation of thymic factor secretion by thyroid hormones. J Endocrinol Invest 13, 139–147 (1990). https://doi.org/10.1007/BF03349524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349524

Key-words

Navigation