Skip to main content
Log in

Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Use of native soil in adsorption of phenol from industrial wastewater has been one of the attractive option for dephenolation, especially in view of low cost and ease in accessibility, as well as scope for regeneration (or, at least reuse). However, an effective usage of the adsorbent necessitates a deeper understanding of the adsorption characteristics. Most of the study of adsorption characteristics are confined to analysis of mono- and bi- parametric isotherm models (and rarely, linearized multi-parametric isotherm models), due to the difficulties in solving higher parametric models, as well as fairly satisfying results by lower-parametric models. In the present study, adsorption batch studies were carried out using a naturally and widely available common soil of south India (namely, Adhanur soil), for removal of phenol from the aqueous solution, with an explicit objective of comparison of linear and non-linear regression methods for finding variation in isotherm coefficients and fitness of the models. Six linearized isotherm models (including four linearized Langmuir models) and three non-linear isotherm model were discussed in this paper, and their coefficients were estimated. Although all the studied isotherm models showed fairly good fit to the experimental data, but Redlich—Peterson isotherm was found to be the best representative for phenol-sorption on the used soil adsorbent. Besides, it was observed that to determine the isotherm parameters non-linear isotherm models were found to be the best representative of adsorption characteristics, than their linearized counter-parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; Hefny, M.; El-Chagbaby G. A. F., (2007). Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Tech., 4 (1), 67–73 (7 pages).

    Article  CAS  Google Scholar 

  • Agarry, S. E.; Solomon, B. O., (2008). Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int. J. Environ. Sci. Tech., 5 (2), 223–232 (10 pages).

    Article  CAS  Google Scholar 

  • Akbal, F., (2005). Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant. J. Environ. Manage., 74 (3), 239–244 (6 pages).

    Article  CAS  Google Scholar 

  • Aksu, Z.; Yener, J., (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage., 21 (8), 695–702 (8 pages).

    Article  CAS  Google Scholar 

  • Al Asheh, S.; Banat, F.; Abu-Aitah, L., (2003). Adsorption of phenol using different types of activated bentonites. Seperat. Purificat. Tech., 33 (1), 1–10 (10 pagres).

    Article  CAS  Google Scholar 

  • Al-Duri, B.; McKay, G., (1988). Basic dye adsorption on carbon using a solid phase diffusion model. Chem. Eng. J., 38 (1), 23–31 (9 pages).

    Article  CAS  Google Scholar 

  • Allen, S. J.; Gana, Q.; Matthewsa, R.; Johnson, P. A., (2003). Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Tech., 88 (2) 143–152 (10 pages).

    Article  CAS  Google Scholar 

  • ATSDR, (1998). Toxicological Profile for Phenol. Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service, Atlanta, GA, USA.

  • Banat, F. A.; Al-Bashir, B.; Al-Asheh, S.; Hayajneh, O., (2000). Adsorption of phenol by bentonite. Environ. Pollut., 107 (3), 391–398 (8 pages).

    Article  CAS  Google Scholar 

  • Bandyopadhyay, G.; Chattopadhyay, S., (2007). Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int. J. Environ. Sci. Tech., 4 (1), 141–149 (9 pages).

    Article  CAS  Google Scholar 

  • Caturla, F.; Martin-Martinez, J. M.; Molina-Sabio, M.; Rodriguez-Reinoso, F.; Torregrosa, R., (1988). Adsorption of substituted phenols on activated carbon. J. Coll. Inter. Sci., 124 (2), 528–534 (7 pages).

    Article  CAS  Google Scholar 

  • Dabrowski, A.; Podkoscielny, P.; Hubicki, Z.; Barcza, M., (2005). Adsorption of phenolic compounds by activated carbon -a critical review. Chemosphere, 58 (8), 1049–1070 (22 pages).

    Article  CAS  Google Scholar 

  • Dursun, G.; Handan, C.; Arzu, Y. D., (2005). Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. B, 125 (1-3), 175–182 (8 pages).

    Article  CAS  Google Scholar 

  • Fang, H. H.; Chen, O., (1997). Toxicity of phenol towards aerobic biogranules. Water Res., 31 (9), 2229–2242 (14 pages).

    Article  CAS  Google Scholar 

  • Goncharuk, V. V.; Kucheruk, D. D.; Kochkodan, V. M.; Badekha, V. P., (2002). Removal of organic substances from aqueous solutions by reagent enhanced reverse osmosis. Desalination, 143 (1), 45–51 (7 pages).

    Article  CAS  Google Scholar 

  • Gosh, D.; Bhattacharya, G. K., (2002). Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 20 (6), 295–300 (6 pages).

    Article  Google Scholar 

  • Gueu, S.; Yao, B.; Adouby, K.; Ado, G., (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech., 4 (1), 11–17 (7 pages).

    Article  CAS  Google Scholar 

  • Hamdaouia, O.; Naffrechoux, E., (2007), Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater., 147 (1–2), 381–394 (14 pages).

    Article  Google Scholar 

  • Ho, Y. S.; Wang, C. C., (2004), Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Proc. Biochem., 39 (6), 761–765 (5 pages).

    Google Scholar 

  • Janos, P.; Buchtova, H.; Ryznarova, M., (2003). Sorption of dyes from aqueous solutions onto fly ash, Water Res., 37 (20), 4938–4944 (7 pages).

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., (1986). General purpose adsorption isotherms. Environ. Sci. Tech., 20 (9), 895–904 (10 pages).

    Article  CAS  Google Scholar 

  • Kojima, T.; Nishijima, K.; Matsukata, M., (1995). Removal and recovery of phenol from FCC effluent. J. Membrane Sci., 102 (1–3), 43–47 (5 pages).

    Article  CAS  Google Scholar 

  • Kujawski, W.; Warszawski, A.; Ratajczak, W.; Porebski, T.; Capaa, W.; Ostrowska, I., (2004). Removal of phenol from wastewater by different separation techniques. Desalination, 163 (1–3), 287–296 (10 pages).

    Article  CAS  Google Scholar 

  • Lanouette, K. H., (1977). Treatment of Phenolic Wastes. Chem Eng., 84 (22), 99–106 (8 pages).

    CAS  Google Scholar 

  • Lawrence, M. A. M.; Kukkadapu, R. K.; Boyd, S. A., (1998). Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethyl-phosphonium-exchanged montmorillonite. Appl. Clay Sci., 13 (1), 13–20 (8 pages).

    Article  CAS  Google Scholar 

  • Magne, P.; Walker, P. L., (1986). Phenol adsorption on activated carbons: Application to the regeneration of activated carbons polluted with phenol. Carbon, 24 (2), 101–107 (7 pages).

    Article  CAS  Google Scholar 

  • Michot, L. J.; Pinnavaia, T. J., (1991). Adsorption of chlorinated phenols from aqueous solution by surfactant- modified pillared clays. Clay. Miner., 39 (6), 634–641 (8 pages).

    Article  CAS  Google Scholar 

  • Moon, H.; Lee, W. K., (1983). Intraparticle diffusion in liquid phase adsorption of phenols with activated carbon in a finite batch adsorber. J. Coll. Interface Sci., 96 (1), 162–170 (9 Pages).

    Article  CAS  Google Scholar 

  • Murialdo, S. E.; Fenoglio, R.; Haure, P. M.; Gonzalez, J. F., (2003). Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA., 29 (4), 457–463 (7 pages).

    CAS  Google Scholar 

  • Porter, J. F.; Mckay, G.; Choy, K. H., (1999). The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci., 54 (24), 5863–5885 (23 pages).

    Article  CAS  Google Scholar 

  • Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int. J. Environ. Sci. Tech., 4 (1), 19–25 (7 pages).

    Article  CAS  Google Scholar 

  • Soil Atlas (1998). Thanjavur district. Department of Agriculture Tamil Nadu, India.

  • Srivastava, V. C.; Swamy, M. M.; Mall, I. D.; Prasad, B.; Mishra, I. M., (2006). Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloid. Surface. A: Physicochem. Eng. Aspect., 272 (1–2), 89–104 (16 pages).

    Article  CAS  Google Scholar 

  • Treybal, R. E., (1981). Mass-transfer Operations. 3rd. Ed., McGraw-Hill.

  • Vasanth Kumar, K.; Sivanesan, S., (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J. Hazard. Mater., 123 (1–3), 288–292 (5 pages).

    Article  Google Scholar 

  • Vasanth Kumar, K.; Sivanesan, S., (2007a). Isotherms for Malachite Green onto rubber Wood (Hevea brasiliensis) sawdust: Comparison of linear and non-linear methods. Dyes and Pigments, 72 (1), 124–129 (6 pages).

    Article  Google Scholar 

  • Vasanth Kumar, K.; Sivanesan, S., (2007b). Sorption isotherm for safranin onto rice husk: Comparison of linear and nonlinear methods. Dyes Pigments 72 (1), 130–133 (4 pages).

    Article  Google Scholar 

  • Viraraghavan, T.; Alfaro, F. M., (1998). Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard. Mater. 57 (1–3), 59–70 (12 pages).

    Article  CAS  Google Scholar 

  • WHO, (1963), Guidelines for drinking-water quality, World Health Organization, Geneva.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Subramanyam M.E..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanyam, B., Das, A. Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. Int. J. Environ. Sci. Technol. 6, 633–640 (2009). https://doi.org/10.1007/BF03326104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326104

Keywords

Navigation