Skip to main content
Log in

Alteration of macroinvertebrate community in tropical aquatic systems in relation to sediment redox potential and overlaying water quality

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Limnological studies in two tropical Indian aquatic habitats showed that macroinvertebrate communities have greater diversity than other biotic communities present there. Sediment redox potential is found to be an important factor for alteration of macroinvertebrate communities in aquatic bodies. Anthropogenic activities have influenced the changing of sediment redox potential values of the studied sites and there by affected the macroinvertebrate communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, G., Graneli, W. and Stenson, J., (1988). The influence of animals on phosphorous cycling in lake ecosystems. Hydrobiol., 170, 267–284.

    Article  Google Scholar 

  • Anonymous (1992). American Water Works Association and Water Pollution Control F ederation, Standard m e t hods for the examination of water and waste waters, 18 th. Ed. Am. Publ. Hlth. Assoc., American Public Health Association, (APHA), Washington DC, USA.

  • Bostrom, B., Jansson, M. and Forsberg, C., (1982). Phosphorous release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol., 18, 5–59.

    Google Scholar 

  • Dallas, H. F., Janssense, M. P. and Day, J. A. (1999). An aquatic macroinvertebrate and chemical database for riverine ecosystems. Water Sa., 25 (1).

  • Einsele, W., (1936). Uber die Beziehungen des Einsenkreislaufs zum phosphatkreislauf in eutrophen sec., Arch.

  • Einsele, W., (1937). Physikalische-chemische Betrachtung einiger probleme des limnischen Mangan -und Eisenkreislaufs. Verh. Int. Ver. Limnol., 5, 69–84.

    Google Scholar 

  • Einsele, W., (1938). Uber Chemischen and kolloidchemische vorgange in Eisen.Phosphat-systemn unter Limnochemischen and Limnogeologischen Gesicht Spunkten. Arch. Hydrobiol., 33, 361–387.

    Google Scholar 

  • Einsele, W. and Vetter, H., (1938). Untersuchungen uber die Entwicklung der physikalischen und Chemischen verhaltnisseim Jahreszyklus in einem ma Big eutrophen see (Schleinsee bei Langenargen). Int. Rev. Hydrobiol., 36, 285–324.

    Article  CAS  Google Scholar 

  • EPA., (1990). Biological Criteria: National Program Guidance for Surface Waters, U.A. Environmental Protection Agency, EPA-440/5-90-004.

  • Harkins, R. D., (1974). An objective water quality index. J. Wat. Pollut. Control. Fed. 46, 588.

    CAS  Google Scholar 

  • Holtan, H., Kamp-Nielsen, L. and Stuanes, A. O., (1988). Phosphorous in soil, water and sediment: an overview. Hydrobio., 170, 19–34.

    Article  CAS  Google Scholar 

  • Holdern, G. C. and Armstrong, D. E., (1980). Factors affecting phosphorous release from intact lake sediment cores. Environ. Sci. Technol., 14, 79–87.

    Article  Google Scholar 

  • Margalef, R., (1958). Perspective in ecological theory. Univ. Chicago Press, 122, Chicago, USA.

    Google Scholar 

  • Mitraszewski, P. and Uchmanski, J., (1989). A numerical model of phosphorous exchange between the sediments and the near bottom water in a lake Ekol. Pol., 36(3–4), 317–346.

    Google Scholar 

  • Mortimer, C. H., (1942). The exchange of dissolved substances between mud and water in lakes, II. J. Ecol., 30, 147–201.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., (1942). Fertilizers in fish ponds. Her Majesty’s stationary office, London, Fisheries Publication, 5, 155.

    Google Scholar 

  • Ohle, W., (1937). Kolloidgele alsNahrstoffregulanten der Gewasser. Naturwissen Schaften, 25, 471–474.

    Article  Google Scholar 

  • Ott, W. R., (1978). Environmental indices theory and practices, Ann. Arbor. Aci. Publis, Inc: 202–213.

    Google Scholar 

  • Starkel, W. M., (1985). Predicting the effects of macrobenthos on the sediment water flux of metals and phosphorous. Can. J. Fish. Aquat. Sci., 42, 95–100.

    Article  CAS  Google Scholar 

  • Shanon, C. E. and Weiner, W., (1949). The Mathematical Theory of Communication. University of Illinois press, 117, Urbana, USA.

  • Willmer, P., Graham, S. and Jhonston, I., (2000). Environmental physiology of animals. Blackwell Science Ltd.

  • Wilhm, J. L. and Dorris, T. C., (1968). Biological parameters of water quality criteria. Bioscience, 18, 477–481.

    Article  Google Scholar 

  • Wisniewski, R. J. and Planter, M., (1985). Exchange of phosphorous across sediment. Water interface (with special attention to the influence of biotic factors) in several lakes of different trophic status. Verh. Int. Ver. Limnol., 22, 3345–3349.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chakrabarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarty, D., Das, S.K. Alteration of macroinvertebrate community in tropical aquatic systems in relation to sediment redox potential and overlaying water quality. Int. J. Environ. Sci. Technol. 2, 327–334 (2006). https://doi.org/10.1007/BF03325893

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03325893

Keywords

Navigation