Skip to main content
Log in

Disease Biomarkers in Multiple Sclerosis

Potential for Use in Therapeutic Decision Making

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an autoimmune disorder of the brain and spinal cord that predominantly affects white matter. MS has a variable clinical presentation and has no ‘diagnostic’ laboratory test; this often results in delays to definite diagnosis. In confronting the disease, early diagnosis and appropriate, timely therapeutic intervention are critical factors in ensuring favorable long-term outcomes.

The availability of reliable biomarkers could radically alter our management of MS at critical phases of the disease spectrum. Identification of markers that could predict the development of MS in high-risk populations would allow for intervention strategies that may prevent evolution to definite disease. Work with anti-myelin antibodies and the ongoing analysis of microarray gene expression have thus far not yielded biomarkers that predict future disease development. Similarly, extensive studies with serum and cerebrospinal fluid (CSF) have not yielded a disease-specific and sensitive diagnostic biomarker for MS. Establishment of disease diagnosis always leads to questions about long-term prognosis because in an individual patient the natural history of the disease is clinically unpredictable. Biomarkers that correlate with myelin loss, spinal cord disease, grey matter and subcortical demyelination need to be developed in order to accurately predict the disease course. The bulk of effort in biomarker development in MS has been concentrated in the area of monitoring disease activity. At present, a disease ‘activation’ panel of CSF biomarkers would include the following: interleukin-6 or its soluble receptor, nitric oxide and nitric oxide synthase, osteopontin, and fetuin-A. Although disease activity in MS is predominantly inflammatory, disease progression is likely to be the result of neurodegeneration. Therefore, the roles of proteins indicative of neuronal, axonal, and glial loss such as neurofilaments, tau, 14-3-3 proteins, and N-acetylaspartate are all under investigation, as are proteins affecting remyelination and regeneration, such as Nogo-A. With the increasing awareness of cognition dysfunction in MS, molecules such as apolipoprotein and proteins in the amyloid precursor protein pathway implicated in dementia are also being examined.

Serum biomarkers that help monitor therapeutic efficacy such as the titer of antibody to β-interferon, a first-line medication in MS, are established in clinical practice. Ongoing work with biomarkers that reflect drug bioavailability and factors that distinguish between medication responders and nonresponders are also under investigation.

The discovery of new biomarkers relies on applying advances in proteomics along with microarray gene and antigen analysis and will hopefully result in the establishment of specific biomarkers for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Fox RJ, Bethoux F, Goldman MD, et al. Multiple sclerosis: advances in understanding, diagnosing, and treating the underlying disease. Cleve Clin J Med 2006; 73: 91–102

    Article  PubMed  Google Scholar 

  2. Gonen O, Moriarty DM, Li BS, et al. Relapsing-remitting multiple sclerosis and whole-brain N-acetylaspartate measurement: evidence for different clinical cohorts — initial observations. Radiology 2002 Oct; 225(1): 261–8

    Article  PubMed  CAS  Google Scholar 

  3. Kantarci O, Wingerchuk D. Epidemiology and natural history of multiple sclerosis: new insights. Curr Opin Neurol 2006 Jun; 19 (3): 248–54

    Google Scholar 

  4. Sadiq SA. Multiple sclerosis. In: Roland LP, editor. Merritt’s neurology. 11th ed. Philadelphia (PA): Lippincott, Williams, and Wilkins, 2005: 941–63

    Google Scholar 

  5. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002 Jun; 15(3): 239–45

    Article  PubMed  Google Scholar 

  6. PRISMS (Prevention of Relapses and Disability by Interferon-beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 1998 Nov 7; 352(9139): 1498–504

    Article  Google Scholar 

  7. Friese MA, Montalban X, Willcox N, et al. The value of animal models for drug development in multiple sclerosis. Brain 2006 Aug; 129 (Pt 8): 1940–52

    Article  PubMed  Google Scholar 

  8. Morrissey SP, Miller DH, Kendall BE, et al. The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis: a 5-year follow-up study. Brain 1993 Feb; 116 (Pt 1): 135–46

    Article  PubMed  Google Scholar 

  9. Paolino E, Fainardi E, Ruppi P, et al. A prospective study on the predictive value of CSF oligoclonal bands and MRI in acute isolated neurological syndromes for subsequent progression to multiple sclerosis. J Neurol Neurosurg Psychiatry 1996 May; 60(5): 572–5

    Article  PubMed  CAS  Google Scholar 

  10. Perumal J, Zabad R, Caon C, et al. Acute transverse myelitis with normal brain MRI: long-term risk of MS. J Neurol 2008 Jan; 255(1): 89–93

    Article  PubMed  Google Scholar 

  11. Compston A, Wekerle H. The genetics of multiple sclerosis. In: Compston A, editor. McAlpine’s multiple sclerosis. Philadelphia (PA): Churchill Livingstone Elsevier, 2006: 113–81

    Chapter  Google Scholar 

  12. Hafler DA, Compston A, Sawcer S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007 Aug 30; 357(9): 851–62

    Article  PubMed  CAS  Google Scholar 

  13. Peltonen L. Old suspects found guilty: the first genome profile of multiple sclerosis. N Engl J Med 2007 Aug 30; 357(9): 927–9

    Article  PubMed  CAS  Google Scholar 

  14. Maier LM, Anderson DE, Severson CA, et al. Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. J Immunol 2009 Feb 1; 182(3): 1541–7

    PubMed  CAS  Google Scholar 

  15. Linington C, Bradl M, Lassmann H, et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988 Mar; 130(3): 443–54

    PubMed  CAS  Google Scholar 

  16. Schluesener HJ, Sobel RA, Linington C, et al. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 1987 Dec 15; 139(12): 4016–21

    PubMed  CAS  Google Scholar 

  17. Kerlero de Rosbo N, Honegger P, Lassmann H, et al. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem 1990 Aug; 55(2): 583–7

    Article  PubMed  CAS  Google Scholar 

  18. Genain CP, Cannella B, Hauser SL, et al. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999 Feb; 5(2): 170–5

    Article  PubMed  CAS  Google Scholar 

  19. Berger T, Rubner P, Schautzer F, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 2003 Jul 10; 349(2): 139–45

    Article  PubMed  CAS  Google Scholar 

  20. Kuhle J, Lindberg RL, Regeniter A, et al. Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF. J Neurol 2007 Feb; 254(2): 160–8

    Article  PubMed  CAS  Google Scholar 

  21. Kuhle J, Pohl C, Mehling M, et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 2007 Jan 25; 356(4): 371–8

    Article  PubMed  CAS  Google Scholar 

  22. Lim ET, Berger T, Reindl M, et al. Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 2005 Aug; 11(4): 492–4

    Article  PubMed  CAS  Google Scholar 

  23. Pelayo R, Tintore M, Montalban X, et al. Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med 2007 Jan 25; 356(4): 426–8

    Article  PubMed  CAS  Google Scholar 

  24. Rauer S, Euler B, Reindl M, et al. Antimyelin antibodies and the risk of relapse in patients with a primary demyelinating event. J Neurol Neurosurg Psychiatry 2006 Jun; 77(6): 739–42

    Article  PubMed  CAS  Google Scholar 

  25. Tomassini V, De Giglio L, Reindl M, et al. Anti-myelin antibodies predict the clinical outcome after a first episode suggestive of MS. Mult Scler 2007 Nov; 13(9): 1086–94

    Article  PubMed  CAS  Google Scholar 

  26. Pittock SJ, Reindl M, Achenbach S, et al. Myelin oligodendrocyte glycoprotein antibodies in pathologically proven multiple sclerosis: frequency, stability and clinicopathologic correlations. Mult Scler 2007 Jan; 13(1): 7–16

    Article  PubMed  CAS  Google Scholar 

  27. Belogurov Jr AA, Kurkova IN, Friboulet A, et al. Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. J Immunol 2008 Jan 15; 180(2): 1258–67

    PubMed  CAS  Google Scholar 

  28. Lalive PH, Menge T, Delarasse C, et al. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci U S A 2006 Feb 14; 103(7): 2280–5

    Article  PubMed  CAS  Google Scholar 

  29. Wang H, Munger KL, Reindl M, et al. Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology 2008 Oct 7; 71(15): 1142–6

    Article  PubMed  CAS  Google Scholar 

  30. Corvol JC, Pelletier D, Henry RG, et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci U S A 2008 Aug 19; 105(33): 11839–44

    Article  PubMed  CAS  Google Scholar 

  31. Johnson D, Hafler DA, Fallis RJ, et al. Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis. J Neuroimmunol 1986 Nov; 13(1): 99–108

    Article  PubMed  CAS  Google Scholar 

  32. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis: part I. The role of infection. Ann Neurol 2007 Apr; 61(4): 288–99

    Article  PubMed  Google Scholar 

  33. Donelan N, Dinzey J, Lin J, et al. Cerebrospinal fluid screening for evidence of Epstein Barr virus presence in multiple sclerosis [abstract no. P310]. Mult Scler 2008; 14(1 Suppl.): S120

    Google Scholar 

  34. Jilek S, Schluep M, Meylan P, et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 2008 Jul; 131 (Pt 7): 1712–21

    Article  PubMed  Google Scholar 

  35. Riverol M, Sepulcre J, Fernandez-Diez B, et al. Antibodies against Epstein-Barr virus and herpesvirus type 6 are associated with the early phases of multiple sclerosis. J Neuroimmunol 2007 Dec; 192(1–2): 184–5

    Article  PubMed  CAS  Google Scholar 

  36. Virtanen JO, Farkkila M, Multanen J, et al. Evidence for human herpesvirus 6 variant A antibodies in multiple sclerosis: diagnostic and therapeutic implications. J Neurovirol 2007 Aug; 13(4): 347–52

    Article  PubMed  CAS  Google Scholar 

  37. Friedman JE, Zabriskie JB, Plank C, et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult Scler 2005 Jun; 11(3): 286–95

    Article  PubMed  CAS  Google Scholar 

  38. Fossey SC, Vnencak-Jones CL, Olsen NJ, et al. Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn 2007 Apr; 9(2): 197–204

    Article  PubMed  CAS  Google Scholar 

  39. Cohen SR, Brune MJ, Herndon RM, et al. Cerebrospinal fluid myelin basic protein and multiple sclerosis. Adv Exp Med Biol 1978; 100: 513–9

    Article  PubMed  CAS  Google Scholar 

  40. Wekerle H, Lassmann H. The immunology of inflammatory demyelinating disease. In: Compston A, editor. McAlpine’s multiple sclerosis. 4th ed. Philadelphia (PA): Churchill Livingstone Elsevier, 2006: 491–555

    Chapter  Google Scholar 

  41. Levin SD, Hoyle NR, Brown JK, et al. Cerebrospinal fluid myelin basic protein immunoreactivity as an indicator of brain damage in children. Dev Med Child Neurol 1985 Dec; 27(6): 807–13

    Article  PubMed  CAS  Google Scholar 

  42. Noseworthy TW, Anderson BJ, Noseworthy AF, et al. Cerebrospinal fluid myelin basic protein as a prognostic marker in patients with head injury. Crit Care Med 1985 Sep; 13(9): 743–6

    Article  PubMed  CAS  Google Scholar 

  43. Clapshaw PA, Muller HW, Wietholter H, et al. Simultaneous measurement of 2−: 3−cyclic-nucleotide 3′ phosphodiesterase and RNase activities in sera and spinal fluids of multiple sclerosis patients. J Neurochem 1984 Jan; 42(1): 12–5

    Article  PubMed  CAS  Google Scholar 

  44. Albert M, Antel J, Bruck W, et al. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol 2007 Apr; 17(2): 129–38

    Article  PubMed  Google Scholar 

  45. Bo L, Vedeler CA, Nyland HI, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 2003 Jul; 62(7): 723–32

    PubMed  Google Scholar 

  46. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005 Nov; 128 (Pt 11): 2705–12

    Article  PubMed  Google Scholar 

  47. Merkler D, Ernsting T, Kerschensteiner M, et al. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 2006 Aug; 129 (Pt 8): 1972–83

    Article  PubMed  Google Scholar 

  48. Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007 Apr; 130 (Pt 4): 1089–104

    Article  PubMed  Google Scholar 

  49. Magliozzi R, Columba-Cabezas S, Serafini B, et al. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2004 Mar; 148(1–2): 11–23

    Article  PubMed  CAS  Google Scholar 

  50. Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004 Apr; 14(2): 164–74

    Article  PubMed  Google Scholar 

  51. Krumbholz M, Theil D, Cepok S, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006 Jan; 129 (Pt 1): 200–11

    Article  PubMed  Google Scholar 

  52. Bartosik-Psujek H, Stelmasiak Z. Correlations between IL-4, IL-12 levels and CCL2, CCL5 levels in serum and cerebrospinal fluid of multiple sclerosis patients. J Neural Transm 2005 Jun; 112(6): 797–803

    Article  PubMed  CAS  Google Scholar 

  53. Drulovic J, Mostarica-Stojkovic M, Levic Z, et al. Interleukin-12 and tumor necrosis factor-alpha levels in cerebrospinal fluid of multiple sclerosis patients. J Neurol Sci 1997 Apr 15; 147(2): 145–50

    Article  PubMed  CAS  Google Scholar 

  54. Fassbender K, Ragoschke A, Rossol S, et al. Increased release of interleukin-12p40 in MS: association with intracerebral inflammation. Neurology 1998 Sep; 51(3): 753–8

    Article  PubMed  CAS  Google Scholar 

  55. Mahad DJ, Howell SJ, Woodroofe MN. Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2002 Apr; 72(4): 498–502

    PubMed  CAS  Google Scholar 

  56. Malmestrom C, Andersson BA, Haghighi S, et al. IL-6 and CCL2 levels in CSF are associated with the clinical course of MS: implications for their possible immunopathogenic roles. J Neuroimmunol 2006 Jun; 175(1–2): 176–82

    Article  PubMed  CAS  Google Scholar 

  57. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995 Apr; 37(4): 424–35

    Article  PubMed  CAS  Google Scholar 

  58. Woodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 1993 Nov; 5(6): 583–8

    Article  PubMed  CAS  Google Scholar 

  59. Frei K, Fredrikson S, Fontana A, et al. Interleukin-6 is elevated in plasma in multiple sclerosis. J Neuroimmunol 1991 Feb; 31(2): 147–53

    Article  PubMed  CAS  Google Scholar 

  60. Maimone D, Gregory S, Arnason BG, et al. Cytokine levels in the cerebrospinal fluid and serum of patients with multiple sclerosis. J Neuroimmunol 1991 Apr; 32(1): 67–74

    Article  PubMed  CAS  Google Scholar 

  61. Padberg F, Feneberg W, Schmidt S, et al. CSF and serum levels of soluble interleukin-6 receptors (sIL-6R and sgp130), but not of interleukin-6 are altered in multiple sclerosis. J Neuroimmunol 1999 Oct 29; 99(2): 218–23

    Article  PubMed  CAS  Google Scholar 

  62. Stelmasiak Z, Koziol-Montewka M, Dobosz B, et al. IL-6 and sIL-6R concentration in the cerebrospinal fluid and serum of MS patients. Med Sci Monit 2001 Sep–Oct; 7(5): 914–8

    PubMed  CAS  Google Scholar 

  63. Vladić A, Horvat G, Vukadin S, et al. Cerebrospinal fluid and serum protein levels of tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R gp80) in multiple sclerosis patients. Cytokine 2002 Oct 21; 20(2): 86–9

    Article  PubMed  CAS  Google Scholar 

  64. Michalopoulou M, Nikolaou C, Tavernarakis A, et al. Soluble interleukin-6 receptor (sIL-6R) in cerebrospinal fluid of patients with inflammatory and non inflammatory neurological diseases. Immunol Lett 2004 Jul 15; 94(3): 183–9

    Article  PubMed  CAS  Google Scholar 

  65. Bagasra O, Michaels FH, Zheng YM, et al. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 1995 Dec 19; 92(26): 12041–5

    Article  PubMed  CAS  Google Scholar 

  66. Bo L, Dawson TM, Wesselingh S, et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 1994 Nov; 36(5): 778–86

    Article  PubMed  CAS  Google Scholar 

  67. De Groot CJ, Ruuls SR, Theeuwes JW, et al. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 1997 Jan; 56(1): 10–20

    Article  PubMed  Google Scholar 

  68. Liu JS, Zhao ML, Brosnan CF, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 2001 Jun; 158(6): 2057–66

    Article  PubMed  CAS  Google Scholar 

  69. Oleszak EL, Zaczynska E, Bhattacharjee M, et al. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clin Diagn Lab Immunol 1998 Jul; 5(4): 438–45

    PubMed  CAS  Google Scholar 

  70. Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol 2002 Aug; 1(4): 232–41

    Article  PubMed  CAS  Google Scholar 

  71. Thiel VE, Audus KL. Nitric oxide and blood-brain barrier integrity. Antioxid Redox Signal 2001 Apr; 3(2): 273–8

    Article  PubMed  CAS  Google Scholar 

  72. Giovannoni G. Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis. Mult Scler 1998 Feb; 4(1): 27–30

    Article  PubMed  CAS  Google Scholar 

  73. Brundin L, Morcos E, Olsson T, et al. Increased intrathecal nitric oxide formation in multiple sclerosis; cerebrospinal fluid nitrite as activity marker. Eur J Neurol 1999 Sep; 6(5): 585–90

    Article  PubMed  CAS  Google Scholar 

  74. Svenningsson A, Petersson AS, Andersen O, et al. Nitric oxide metabolites in CSF of patients with MS are related to clinical disease course. Neurology 1999 Nov 10; 53(8): 1880–2

    Article  PubMed  CAS  Google Scholar 

  75. Yamashita T, Ando Y, Obayashi K, et al. Changes in nitrite and nitrate (NO2-/NO3-) levels in cerebrospinal fluid of patients with multiple sclerosis. J Neurol Sci 1997 Dec 9; 153(1): 32–4

    Article  PubMed  CAS  Google Scholar 

  76. Acar G, Idiman F, Idiman E, et al. Nitric oxide as an activity marker in multiple sclerosis. J Neurol 2003 May; 250(5): 588–92

    Article  PubMed  CAS  Google Scholar 

  77. Rejdak K, Eikelenboom MJ, Petzold A, et al. CSF nitric oxide metabolites are associated with activity and progression of multiple sclerosis. Neurology 2004 Oct 26; 63(8): 1439–45

    Article  PubMed  CAS  Google Scholar 

  78. Calabrese V, Scapagnini G, Ravagna A, et al. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and Snitrosothiols and with changes in glutathione levels. J Neurosci Res 2002 Nov 15; 70(4): 580–7

    Article  PubMed  CAS  Google Scholar 

  79. Chabas D, Baranzini SE, Mitchell D, et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 2001 Nov 23; 294(5547): 1731–5

    Article  PubMed  CAS  Google Scholar 

  80. Sinclair C, Mirakhur M, Kirk J, et al. Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol 2005 Jun; 31(3): 292–303

    Article  PubMed  CAS  Google Scholar 

  81. Comabella M, Pericot I, Goertsches R, et al. Plasma osteopontin levels in multiple sclerosis. J Neuroimmunol 2005 Jan; 158(1–2): 231–9

    Article  PubMed  CAS  Google Scholar 

  82. Vogt MH, Lopatinskaya L, Smits M, et al. Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann Neurol 2003 Jun; 53(6): 819–22

    Article  PubMed  CAS  Google Scholar 

  83. Vogt MH, Floris S, Killestein J, et al. Osteopontin levels and increased disease activity in relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2004 Oct; 155(1–2): 155–60

    Article  PubMed  CAS  Google Scholar 

  84. Chowdhury SA, Lin J, Sadiq SA. Specificity and correlation with disease activity of cerebrospinal fluid osteopontin levels in patients with multiple sclerosis. Arch Neurol 2008 Feb; 65(2): 232–5

    Article  PubMed  Google Scholar 

  85. Demetriou M, Binkert C, Sukhu B, et al. Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. J Biol Chem 1996 May 31; 271(22): 12755–61

    Article  PubMed  CAS  Google Scholar 

  86. Dinzey J, Donelan N, Yan Q, et al. Elevated cerebrospinal fluid fetuin-A levels are a marker of disease activity in multiple sclerosis [abstract plus poster no. 335.8]. Neuroscience 2007; 2007 Nov 3–7; San Diego (CA) [online]. Available from URL: http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey=9E32027B-3A56-4AA2-B59F-AA0F81A158AE&SKey=9CC7E157-4CA9-4F70-AB5A-F5A395924942&MKey=FF8B70E5-B7F9-4D07-A58A-C1068FDE9D25&AKey=3A7DC0B9-D787-44AA-BD08-FA7BB2FE9004 [Accessed 2009 Aug 3]

  87. Yan Q, Donelan N, Dinzey J, et al. Fetuin-A is a biomarker for disease activity and treatment efficacy in multiple sclerosis [abstract no. P897]. Mult Scler 2008; 14(1 Suppl.): S292

    Google Scholar 

  88. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008; 31: 247–69

    Article  PubMed  CAS  Google Scholar 

  89. Lim ET, Grant D, Pashenkov M, et al. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult Scler 2004 Jun; 10(3): 261–5

    Article  PubMed  CAS  Google Scholar 

  90. Miyazawa I, Nakashima I, Petzold A, et al. High CSF neurofilament heavy chain levels in neuromyelitis optica. Neurology 2007 Mar 13; 68(11): 865–7

    Article  PubMed  CAS  Google Scholar 

  91. Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol 2002 Jan; 122(1–2): 132–9

    Article  PubMed  CAS  Google Scholar 

  92. Lycke JN, Karlsson JE, Andersen O, et al. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998 Mar; 64(3): 402–4

    Article  PubMed  CAS  Google Scholar 

  93. Malmestrom C, Haghighi S, Rosengren L, et al. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003 Dec 23; 61(12): 1720–5

    Article  PubMed  CAS  Google Scholar 

  94. Norgren N, Sundstrom P, Svenningsson A, et al. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 2004 Nov 9; 63(9): 1586–90

    Article  PubMed  CAS  Google Scholar 

  95. Rejdak K, Petzold A, Stelmasiak Z, et al. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult Scler 2008 Jan; 14(1): 59–66

    Article  PubMed  CAS  Google Scholar 

  96. Eikelenboom MJ, Petzold A, Lazeron RH, et al. Multiple sclerosis: neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 2003 Jan 28; 60(2): 219–23

    Article  PubMed  CAS  Google Scholar 

  97. Silber E, Semra YK, Gregson NA, et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology 2002 May 14; 58(9): 1372–81

    Article  PubMed  CAS  Google Scholar 

  98. Bartos A, Fialova L, Soukupova J, et al. Antibodies against light neurofilaments in multiple sclerosis patients. Acta Neurol Scand 2007 Aug; 116(2): 100–7

    Article  PubMed  CAS  Google Scholar 

  99. Bartos A, Fialova L, Soukupova J, et al. Elevated intrathecal antibodies against the medium neurofilament subunit in multiple sclerosis. J Neurol 2007 Jan; 254(1): 20–5

    Article  PubMed  Google Scholar 

  100. Frankfort SV, Tulner LR, van Campen JP, et al. Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 2008 May; 3(2): 123–31

    Article  PubMed  CAS  Google Scholar 

  101. Skinningsrud A, Stenset V, Gundersen AS, et al. Cerebrospinal fluid markers in Creutzfeldt-Jakob disease. Cerebrospinal Fluid Res 2008; 5: 14 [online]. Available from URL: http://www.cerebrospinalfluidresearch.com/content/5/1/14 [Accessed 2009 Aug 10]

    Article  PubMed  CAS  Google Scholar 

  102. Franz G, Beer R, Kampfl A, et al. Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2003 May 13; 60(9): 1457–61

    Article  PubMed  CAS  Google Scholar 

  103. Bartosik-Psujek H, Archelos JJ. Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J Neurol 2004 Apr; 251(4): 414–20

    Article  PubMed  CAS  Google Scholar 

  104. Bartosik-Psujek H, Stelmasiak Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J Neural Transm 2006 Mar; 113(3): 339–45

    Article  PubMed  CAS  Google Scholar 

  105. Guimaraes I, Cardoso MI, Sa MJ. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult Scler 2006 Jun; 12(3): 354–6

    Article  PubMed  CAS  Google Scholar 

  106. Kapaki E, Paraskevas GP, Michalopoulou M, et al. Increased cerebrospinal fluid tau protein in multiple sclerosis. Eur Neurol 2000; 43(4): 228–32

    Article  PubMed  CAS  Google Scholar 

  107. Martinez-Yelamos A, Saiz A, Bas J, et al. Tau protein in cerebrospinal fluid: a possible marker of poor outcome in patients with early relapsing-remitting multiple sclerosis. Neurosci Lett 2004 Jun 3; 363(1): 14–7

    Article  PubMed  CAS  Google Scholar 

  108. Terzi M, Birinci A, Cetinkaya E, et al. Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis. Acta Neurol Scand 2007 May; 115(5): 325–30

    Article  PubMed  CAS  Google Scholar 

  109. Jimenez-Jimenez FJ, Zurdo JM, Hernanz A, et al. Tau protein concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neurol Scand 2002 Dec; 106(6): 351–4

    Article  PubMed  CAS  Google Scholar 

  110. Brettschneider J, Maier M, Arda S, et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult Scler 2005 Jun; 11(3): 261–5

    Article  PubMed  CAS  Google Scholar 

  111. Colucci M, Roccatagliata L, Capello E, et al. The 14-3-3 protein in multiple sclerosis: a marker of disease severity. Mult Scler 2004 Oct; 10(5): 477–81

    Article  PubMed  CAS  Google Scholar 

  112. Satoh J, Yukitake M, Kurohara K, et al. Detection of the 14-3-3 protein in the cerebrospinal fluid of Japanese multiple sclerosis patients presenting with severe myelitis. J Neurol Sci 2003 Aug 15; 212(1–2): 11–20

    Article  PubMed  CAS  Google Scholar 

  113. Martinez-Yelamos A, Rovira A, Sanchez-Valle R, et al. CSF 14-3-3 protein assay and MRI as prognostic markers in patients with a clinically isolated syndrome suggestive of MS. J Neurol 2004 Oct; 251(10): 1278–9

    Article  PubMed  CAS  Google Scholar 

  114. Martinez-Yelamos A, Saiz A, Sanchez-Valle R, et al. 14-3-3 protein in the CSF as prognostic marker in early multiple sclerosis. Neurology 2001 Aug 28; 57(4): 722–4

    Article  PubMed  CAS  Google Scholar 

  115. Kawamoto Y, Akiguchi I, Kovacs GG, et al. Increased 14-3-3 immuno-reactivity in glial elements in patients with multiple sclerosis. Acta Neuropathol 2004 Feb; 107(2): 137–43

    Article  PubMed  CAS  Google Scholar 

  116. Satoh J, Yamamura T, Arima K. The 14-3-3 protein epsilon isoform expressed in reactive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fibrillary acidic protein in cultured human astrocytes. Am J Pathol 2004 Aug; 165(2): 577–92

    Article  PubMed  CAS  Google Scholar 

  117. Alexander JS, Minagar A, Harper M, et al. Proteomic analysis of human cerebral endothelial cells activated by multiple sclerosis serum and IFNbeta-1b. J Mol Neurosci 2007; 32(3): 169–78

    Article  PubMed  CAS  Google Scholar 

  118. Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000 Jan 27; 403(6768): 434–9

    Article  PubMed  CAS  Google Scholar 

  119. GrandPré T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000 Jan 27; 403(6768): 439–44

    Article  PubMed  Google Scholar 

  120. Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. Nature 2000 Jan 27; 403(6768): 383–4

    Article  PubMed  CAS  Google Scholar 

  121. Buss A, Sellhaus B, Wolmsley A, et al. Expression pattern of NOGO-A protein in the human nervous system. Acta Neuropathol 2005 Aug; 110(2): 113–9

    Article  PubMed  CAS  Google Scholar 

  122. Kuhlmann T, Remington L, Maruschak B, et al. Nogo-A is a reliable oligo-dendroglial marker in adult human and mouse CNS and in demyelinated lesions. J Neuropathol Exp Neurol 2007 Mar; 66(3): 238–46

    Article  PubMed  CAS  Google Scholar 

  123. Jurewicz A, Matysiak M, Raine CS, et al. Soluble Nogo-A, an inhibitor of axonal regeneration, as a biomarker for multiple sclerosis. Neurology 2007 Jan 23; 68(4): 283–7

    Article  PubMed  CAS  Google Scholar 

  124. Lindsey JW, Crawford MP, Hatfield LM. Soluble Nogo-A in CSF is not a useful biomarker for multiple sclerosis. Neurology 2008 Jul 1; 71(1): 35–7

    Article  PubMed  CAS  Google Scholar 

  125. Reindl M, Khantane S, Ehling R, et al. Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol 2003 Dec; 145(1–2): 139–47

    Article  PubMed  CAS  Google Scholar 

  126. Onoue H, Satoh JI, Ogawa M, et al. Detection of anti-Nogo receptor auto-antibody in the serum of multiple sclerosis and controls. Acta Neurol Scand 2007 Mar; 115(3): 153–60

    Article  PubMed  CAS  Google Scholar 

  127. Bjartmar C, Battistuta J, Terada N, et al. N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immuno-histochemical study on the rat optic nerve. Ann Neurol 2002 Jan; 51(1): 51–8

    Article  PubMed  CAS  Google Scholar 

  128. Bhakoo KK, Pearce D. In vitro expression of N-acetyl aspartate by oligo-dendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 2000 Jan; 74(1): 254–62

    Article  PubMed  CAS  Google Scholar 

  129. Bjartmar C, Kidd G, Mork S, et al. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000 Dec; 48(6): 893–901

    Article  PubMed  CAS  Google Scholar 

  130. Davie CA, Hawkins CP, Barker GJ, et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994 Feb; 117 (Pt 1): 49–58

    Article  PubMed  Google Scholar 

  131. De Stefano N, Guidi L, Stromillo ML, et al. Imaging neuronal and axonal degeneration in multiple sclerosis. Neurol Sci 2003 Dec; 24Suppl. 5: S283–6

    Article  PubMed  Google Scholar 

  132. De Stefano N, Iannucci G, Sormani MP, et al. MR correlates of cerebral atrophy in patients with multiple sclerosis. J Neurol 2002 Aug; 249(8): 1072–7

    Article  PubMed  Google Scholar 

  133. De Stefano N, Matthews PM, Fu L, et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis: results of a longitudinal magnetic resonance spectroscopy study. Brain 1998 Aug; 121 (Pt 8): 1469–77

    Article  PubMed  Google Scholar 

  134. Rovaris M, Gambini A, Gallo A, et al. Axonal injury in early multiple sclerosis is irreversible and independent of the short-term disease evolution. Neurology 2005 Nov 22; 65(10): 1626–30

    Article  PubMed  CAS  Google Scholar 

  135. Jasperse B, Jakobs C, Eikelenboom MJ, et al. N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gaschromatography-mass spectrometry. J Neurol 2007 May; 254(5): 631–7

    Article  PubMed  CAS  Google Scholar 

  136. Rigotti DJ, Inglese M, Gonen O. Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol 2007 Nov–Dec; 28(10): 1843–9

    Article  PubMed  CAS  Google Scholar 

  137. Ghaffar O, Feinstein A. The neuropsychiatry of multiple sclerosis: a review of recent developments. Curr Opin Psychiatry 2007 May; 20(3): 278–85

    PubMed  Google Scholar 

  138. Selby MJ, Ling N, Williams JM, et al. Interferon beta 1-b in verbal memory functioning of patients with relapsing-remitting multiple sclerosis. Percept Mot Skills 1998 Jun; 86 (3 Pt 1): 1099–106

    Article  PubMed  CAS  Google Scholar 

  139. Weinstein A, Schwid SR, Schiffer RB, et al. Neuropsychologic status in multiple sclerosis after treatment with glatiramer. Arch Neurol 1999 Mar; 56(3): 319–24

    Article  PubMed  CAS  Google Scholar 

  140. Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 1996; 47: 387–400

    Article  PubMed  CAS  Google Scholar 

  141. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993 Mar 1; 90(5): 1977–81

    Article  PubMed  CAS  Google Scholar 

  142. Fazekas F, Enzinger C, Ropele S, et al. The impact of our genes: consequences of the apolipoprotein E polymorphism in Alzheimer disease and multiple sclerosis. J Neurol Sci 2006 Jun 15; 245(1–2): 35–9

    Article  PubMed  CAS  Google Scholar 

  143. De Stefano N, Bartolozzi ML, Nacmias B, et al. Influence of apolipoprotein E epsilon4 genotype on brain tissue integrity in relapsing-remitting multiple sclerosis. Arch Neurol 2004 Apr; 61(4): 536–40

    Article  PubMed  Google Scholar 

  144. Enzinger C, Ropele S, Smith S, et al. Accelerated evolution of brain atrophy and “black holes” in MS patients with APOE-epsilon 4. Ann Neurol 2004 Apr; 55(4): 563–9

    Article  PubMed  CAS  Google Scholar 

  145. Enzinger C, Ropele S, Strasser-Fuchs S, et al. Lower levels of N-acetylaspartate in multiple sclerosis patients with the apolipoprotein E epsilon4 allele. Arch Neurol 2003 Jan; 60(1): 65–70

    Article  PubMed  Google Scholar 

  146. Zakrzewska-Pniewska B, Styczynska M, Podlecka A, et al. Association of apolipoprotein E and myeloperoxidase genotypes to clinical course of familial and sporadic multiple sclerosis. Mult Scler 2004 Jun; 10(3): 266–71

    Article  PubMed  CAS  Google Scholar 

  147. Zwemmer JN, van Veen T, van Winsen L, et al. No major association of ApoE genotype with disease characteristics and MRI findings in multiple sclerosis. Mult Scler 2004 Jun; 10(3): 272–7

    Article  PubMed  CAS  Google Scholar 

  148. Shi J, Zhao CB, Vollmer TL, et al. APOE epsilon 4 allele is associated with cognitive impairment in patients with multiple sclerosis. Neurology 2008 Jan 15; 70(3): 185–90

    Article  PubMed  CAS  Google Scholar 

  149. Koutsis G, Panas M, Karadima G, et al. APOE genotypes in Greek multiple sclerosis patients: no effect on the MS Severity Score. J Neurol 2007 Mar; 254(3): 394–5

    Article  PubMed  Google Scholar 

  150. Savettieri G, Messina D, Andreoli V, et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J Neurol 2004 Oct; 251(10): 1208–14

    Article  PubMed  Google Scholar 

  151. Ewers M, Zhong Z, Burger K, et al. Increased CSF-BACE 1 activity is associated with ApoE-epsilon 4 genotype in subjects with mild cognitive impairment and Alzheimer’s disease. Brain 2008 May; 131 (Pt 5): 1252–8

    Article  PubMed  Google Scholar 

  152. Marksteiner J, Hinterhuber H, Humpel C. Cerebrospinal fluid biomarkers for diagnosis of Alzheimer’s disease: beta-amyloid (1–42), tau, phospho-tau-181 and total protein. Drugs Today (Barc) 2007 Jun; 43(6): 423–31

    Article  CAS  Google Scholar 

  153. Vidal R, Frangione B, Rostagno A, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 1999 Jun 24; 399(6738): 776–81

    Article  PubMed  CAS  Google Scholar 

  154. Mattsson N, Axelsson M, Haghighi S, et al. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult Scler 2009 Apr; 15: 448–54

    Article  PubMed  CAS  Google Scholar 

  155. Fotinopoulou A, Tsachaki M, Vlavaki M, et al. BRI2 interacts with amyloid precursor protein (APP) and regulates amyloid beta (Abeta) production. J Biol Chem 2005 Sep 2; 280(35): 30768–72

    Article  PubMed  CAS  Google Scholar 

  156. Kim J, Miller VM, Levites Y, et al. BRI2 (ITM2b) inhibits Abeta deposition in vivo. J Neurosci 2008 Jun 4; 28(23): 6030–6

    Article  PubMed  CAS  Google Scholar 

  157. Matsuda S, Giliberto L, Matsuda Y, et al. The familial dementia BRI2 gene binds the Alzheimer gene amyloid-beta precursor protein and inhibits amyloid-beta production. J Biol Chem 2005 Aug 12; 280(32): 28912–6

    Article  PubMed  CAS  Google Scholar 

  158. Harris VK, Wang G, Diamanduros AW, et al. Bri-CT amyloid peptide levels are decreased in the cerebrospinal fluid of progressive multiple sclerosis patients [abstract]. Neurology 2006 Mar 14; 66 (5 Suppl. 2): A370–1

    Google Scholar 

  159. Good PI, O’Hara NB, Chhua N, et al. Cognition and cerebellar dysfunction in multiple sclerosis are associated with decreased Bri2 expression [abstract]. Neurology 2008 Mar 11; 70 (11 Suppl. 1): A412

    Article  Google Scholar 

  160. Sadiq SA, Revesz K, Lassman A, et al. Antibodies to interferon-beta in patients with multiple sclerosis: detection and clinical effects. Neurology 1996; 46Suppl. 2: A136

    Google Scholar 

  161. Bendtzen K. Anti-IFN BAb and NAb antibodies: a minireview. Neurology 2003 Nov 11; 61 (9 Suppl. 5): S6–10

    Article  PubMed  Google Scholar 

  162. Boz C, Oger J, Gibbs E, et al. Reduced effectiveness of long-term interferon-beta treatment on relapses in neutralizing antibody-positive multiple sclerosis patients: a Canadian multiple sclerosis clinic-based study. Mult Scler 2007 Nov; 13(9): 1127–37

    Article  PubMed  CAS  Google Scholar 

  163. Prince HE, Lape-Nixon M, Audette C, et al. Identification of interferon-beta antibodies in a reference laboratory setting: findings for 1144 consecutive sera. J Neuroimmunol 2007 Oct; 190(1–2): 165–9

    Article  PubMed  CAS  Google Scholar 

  164. Pachner AR, Oger J, Palace J. The measurement of antibodies binding to IFNbeta in MS patients treated with IFNbeta. Neurology 2003 Nov 11; 61 (9 Suppl. 5): S18–20

    Article  PubMed  Google Scholar 

  165. Goodin DS, Frohman EM, Hurwitz B, et al. Neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2007 Mar 27; 68(13): 977–84

    Article  PubMed  CAS  Google Scholar 

  166. Pachner AR, Dail D, Pak E, et al. The importance of measuring IFNbeta bioactivity: monitoring in MS patients and the effect of anti-IFNbeta antibodies. J Neuroimmunol 2005 Sep; 166(1–2): 180–8

    Article  PubMed  CAS  Google Scholar 

  167. Calabresi PA, Giovannoni G, Confavreux C, et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology 2007 Oct 2; 69(14): 1391–403

    Article  PubMed  CAS  Google Scholar 

  168. Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to copolymer 1 in multiple sclerosis patients treated with copaxone. J Neuroimmunol 2001 Apr 2; 115(1–2): 152–60

    Article  PubMed  CAS  Google Scholar 

  169. Salama HH, Hong J, Zang YC, et al. Blocking effects of serum reactive antibodies induced by glatiramer acetate treatment in multiple sclerosis. Brain 2003 Dec; 126 (Pt 12): 2638–47

    Article  PubMed  Google Scholar 

  170. Teitelbaum D, Brenner T, Abramsky O, et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 2003 Dec; 9(6): 592–9

    Article  PubMed  CAS  Google Scholar 

  171. Bertolotto A, Gilli F, Sala A, et al. Evaluation of bioavailability of three types of IFNbeta in multiple sclerosis patients by a new quantitative-competitive-PCR method for MxA quantification. J Immunol Methods 2001 Oct 1; 256(1–2): 141–52

    Article  PubMed  CAS  Google Scholar 

  172. Gilli F, Marnetto F, Caldano M, et al. Biological responsiveness to first injections of interferon-beta in patients with multiple sclerosis. J Neuroimmunol 2005 Jan; 158(1–2): 195–203

    Article  PubMed  CAS  Google Scholar 

  173. Pachner A, Narayan K, Price N, et al. MxA gene expression analysis as an interferon-beta bioactivity measurement in patients with multiple sclerosis and the identification of antibody-mediated decreased bioactivity. Mol Diagn 2003; 7(1): 17–25

    Article  PubMed  Google Scholar 

  174. Bertolotto A, Gilli F, Sala A, et al. Persistent neutralizing antibodies abolish the interferon beta bioavailability in MS patients. Neurology 2003 Feb 25; 60(4): 634–9

    Article  PubMed  CAS  Google Scholar 

  175. Deisenhammer F, Reindl M, Harvey J, et al. Bioavailability of interferon beta 1b in MS patients with and without neutralizing antibodies. Neurology 1999 Apr 12; 52(6): 1239–43

    Article  PubMed  CAS  Google Scholar 

  176. Gilli F, Bertolotto A, Sala A, et al. Neutralizing antibodies against IFN-beta in multiple sclerosis: antagonization of IFN-beta mediated suppression of MMPs. Brain 2004 Feb; 127 (Pt 2): 259–68

    Article  PubMed  Google Scholar 

  177. Malucchi S, Gilli F, Caldano M, et al. Predictive markers for response to interferon therapy in patients with multiple sclerosis. Neurology 2008 Mar 25; 70 (13 Pt 2): 1119–27

    Article  PubMed  CAS  Google Scholar 

  178. Gilli F, Marnetto F, Caldano M, et al. Biological markers of interferon-beta therapy: comparison among interferon-stimulated genes MxA, TRAIL and XAF-1. Mult Scler 2006 Feb; 12(1): 47–57

    Article  PubMed  CAS  Google Scholar 

  179. Santos R, Weinstock-Guttman B, Tamano-Blanco M, et al. Dynamics of interferon-beta modulated mRNA biomarkers in multiple sclerosis patients with anti-interferon-beta neutralizing antibodies. J Neuroimmunol 2006 Jul; 176(1–2): 125–33

    Article  PubMed  CAS  Google Scholar 

  180. Wandinger KP, Lunemann JD, Wengert O, et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 2003 Jun 14; 361(9374): 2036–43

    Article  PubMed  CAS  Google Scholar 

  181. Lunemann JD, Waiczies S, Ehrlich S, et al. Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells. J Immunol 2002 May 15; 168(10): 4881–8

    PubMed  CAS  Google Scholar 

  182. Aktas O, Schulze-Topphoff U, Zipp F. The role of TRAIL/TRAIL receptors in central nervous system pathology. Front Biosci 2007; 12: 2912–21

    Article  PubMed  CAS  Google Scholar 

  183. Aktas O, Smorodchenko A, Brocke S, et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 2005 May 5; 46(3): 421–32

    Article  PubMed  CAS  Google Scholar 

  184. Buttmann M, Merzyn C, Hofstetter HH, et al. TRAIL, CXCL10 and CCL2 plasma levels during long-term interferon-beta treatment of patients with multiple sclerosis correlate with flu-like adverse effects but do not predict therapeutic response. J Neuroimmunol 2007 Oct; 190(1–2): 170–6

    Article  PubMed  CAS  Google Scholar 

  185. Lau AS, Hannigan GE, Freedman MH, et al. Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy. J Clin Invest 1986 May; 77(5): 1632–8

    Article  PubMed  CAS  Google Scholar 

  186. Oliver B, Mayorga C, Fernandez V, et al. Interferon receptor expression in multiple sclerosis patients. J Neuroimmunol 2007 Feb; 183(1–2): 225–31

    Article  PubMed  CAS  Google Scholar 

  187. Gilli F, Valentino P, Caldano M, et al. Expression and regulation of IFN-alpha/beta receptor in IFNbeta-treated patients with multiple sclerosis. Neurology 2008 Dec 9; 71(24): 1940–7

    Article  PubMed  CAS  Google Scholar 

  188. Dumont D, Noben JP, Raus J, et al. Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients. Proteomics 2004 Jul; 4(7): 2117–24

    Article  PubMed  CAS  Google Scholar 

  189. Hammack BN, Fung KY, Hunsucker SW, et al. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 2004 Jun; 10(3): 245–60

    Article  PubMed  CAS  Google Scholar 

  190. Lehmensiek V, Sussmuth SD, Tauscher G, et al. Cerebrospinal fluid proteome profile in multiple sclerosis. Mult Scler 2007 Aug; 13(7): 840–9

    Article  PubMed  CAS  Google Scholar 

  191. Noben JP, Dumont D, Kwasnikowska N, et al. Lumbar cerebrospinal fluid proteome in multiple sclerosis: characterization by ultrafiltration, liquid chromatography, and mass spectrometry. J Proteome Res 2006 Jul; 5(7): 1647–57

    Article  PubMed  CAS  Google Scholar 

  192. Irani DN, Anderson C, Gundry R, et al. Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann Neurol 2006 Feb; 59(2): 237–47

    Article  PubMed  CAS  Google Scholar 

  193. Stoevring B, Jaliashvili I, Thougaard AV, et al. Tetranectin in cerebrospinal fluid of patients with multiple sclerosis. Scand J Clin Lab Invest 2006; 66(7): 577–83

    Article  PubMed  CAS  Google Scholar 

  194. Nakashima I, Fujinoki M, Fujihara K, et al. Alteration of cystatin C in the cerebrospinal fluid of multiple sclerosis. Ann Neurol 2007 Aug; 62(2): 197–200

    Article  PubMed  CAS  Google Scholar 

  195. Del Boccio P, Pieragostino D, Lugaresi A, et al. Cleavage of cystatin C is not associated with multiple sclerosis. Ann Neurol 2007 Aug; 62(2): 201–24

    Article  PubMed  CAS  Google Scholar 

  196. Hansson SF, Simonsen AH, Zetterberg H, et al. Cystatin C in cerebrospinal fluid and multiple sclerosis. Ann Neurol 2007 Aug; 62(2): 193–16

    Article  PubMed  CAS  Google Scholar 

  197. Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 2005 Apr 15; 80(2): 182–90

    Article  PubMed  CAS  Google Scholar 

  198. Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 2007 Jul 26; 448(7152): 474–9

    Article  PubMed  CAS  Google Scholar 

  199. Agius MA, Kirvan CA, Schafer AL, et al. High prevalence of anti-alpha-crystallin antibodies in multiple sclerosis: correlation with severity and activity of disease. Acta Neurol Scand 1999 Sep; 100(3): 139–47

    Article  PubMed  CAS  Google Scholar 

  200. Celet B, Akman-Demir G, Serdaroglu P, et al. Anti-alpha B-crystallin immunoreactivity in inflammatory nervous system diseases. J Neurol 2000 Dec; 247(12): 935–9

    Article  PubMed  CAS  Google Scholar 

  201. Vojdani A, Vojdani E, Cooper E. Antibodies to myelin basic protein, myelin oligodendrocytes peptides, alpha-beta-crystallin, lymphocyte activation and cytokine production in patients with multiple sclerosis. J Intern Med 2003 Oct; 254(4): 363–74

    Article  PubMed  CAS  Google Scholar 

  202. Han MH, Hwang SI, Roy DB, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 2008 Feb 28; 451(7182): 1076–81

    Article  PubMed  CAS  Google Scholar 

  203. Quintana FJ, Farez MF, Viglietta V, et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A 2008 Dec 2; 105(48): 18889–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Shubert Foundation (New York, NY, USA) for their financial support. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud A. Sadiq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, V.K., Sadiq, S.A. Disease Biomarkers in Multiple Sclerosis. Mol Diag Ther 13, 225–244 (2009). https://doi.org/10.1007/BF03256329

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256329

Keywords

Navigation