Skip to main content
Log in

Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A simple and effective procedure is proposed for spectrophotometric determination of catecholamines; Dopamine (1), L-Dopa (2) and Adrenaline (3). It was found that the reduction of Ag+ to silver nanoparticles (Ag-NPs) by these catecholamines in the presence of polyvinylpyrrolidone (PVP) as a stabilizing agent produced very intense surface plasmon resonance peak of Ag-NPs. The plasmon absorbance of the Ag-NPs allows the quantitative spectrophotometric detection of the catecholamines. The calibration curves derived from the changes in absorbance at λ = 440 nm were linear with concentration of Dopamine, Levodopa and Adrenaline in the range of 3.2×10−6− 2.0×10−5 M, 1.6×10−7 − 1.0×10−5 M, 1.5×10−6− 4.0×10−5 M, respectively. The detection limits (3σ) were 1.2×10−6 M, 8.6 ×10−8 M, 9.7 ×10−7 M for the Dopamine, L-Dopa and Adrenaline, respectively. The method was applied successfully to the determination of catecholamines in Ringer’s injection serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Paulson, Med. Hypoth. 38 (1992) 206.

    CAS  Google Scholar 

  2. H. Wisser, in: L. Thomas (Ed.), Labor und Diagnose: Indikation und Bewertung von Laborbefunden fur Medizinische Diagnostik, TH-Books, Frankfurt, 2000, p. 1062.

    Google Scholar 

  3. Q.M. Xue, Physiological and Pathological Chemistry of Nervous System, Science Press, Beijing, 1978, p. 102.

    Google Scholar 

  4. R.S. Chen, W.H Huang, H. Tong, Z.L. Wang, J.K. Cheng, Anal. Chem. 75 (2003) 6341.

    CAS  Google Scholar 

  5. C.R. Raj, T. Okajima, T. Shsaka, J. Electroanal. Chem. 543 (2002) 127.

    Google Scholar 

  6. M. Tsunoda, K. Imai, Anal Chim Acta 541 (2005) 13.

    CAS  Google Scholar 

  7. X.L. Zhu, P.N. Shaw, D.A. Barrett, Anal. Chim. Acta 478 (2003) 259.

    CAS  Google Scholar 

  8. M. Vlcková, M.A. Schwarz, J. Chromatogr. A 1142 (2007) 214.

    Google Scholar 

  9. M. Tsunoda, Anal. Bioanal. Chem. 386 (2006) 506.

    CAS  Google Scholar 

  10. M. Moini, C.L. Schultz, H. Mahmood, Anal. Chem. 75 (2003) 6282.

    CAS  Google Scholar 

  11. M.A. El-Sayed, Acc. Chem. Res. 34 (2001) 257.

    CAS  Google Scholar 

  12. A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33 (2000) 27.

    CAS  Google Scholar 

  13. Y. Sun, Y. Xia, Analyst 128 (2003) 686.

    CAS  Google Scholar 

  14. A.D. McFarland, R.P. Van Duyne, Nano Lett. 3 (2003) 1057.

    CAS  Google Scholar 

  15. T.R. Jensen, M. Duval Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104 (2000) 10549.

    CAS  Google Scholar 

  16. H. Wei, B. Li, J. Li, E. Wang and S. Dong, Chem. Commun., 36 (2007) 3735.

    Google Scholar 

  17. J. Liu, Y. Lu, J. Fluorescence 14 (2004) 343.

    Google Scholar 

  18. H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, J. Am. Chem. Soc. 123 (2001) 8226.

    CAS  Google Scholar 

  19. R. Baron, M. Zayats, I. Willner, Anal. Chem. 77 (2005) 1566.

    CAS  Google Scholar 

  20. L. Shang, S. Dong, Nanotechnology 19 (2008) 095502.

    Google Scholar 

  21. M.R. Hormozi Nezhad, M. Alimohammadi, J. Tashkhourian, S. Mehdi Razavian, Spectrochimica Acta: Part A 71 (2008) 199.

    Google Scholar 

  22. F.X. Zhang, L. Han, L.B. Israel, J.G. Daras, M.M. Maye, N.K. Ly, C.J. Zhong, Analyst 127 (2002) 462.

    CAS  Google Scholar 

  23. C.S. Thaxton, C.A. Mirkin, in: C.M. Niemeyer, C.A. Mirkin (Eds.), Nanobiotechnology, Wiley-VCH, Weinheim, 2004, pp. 288–307, and references cited therein.

    Google Scholar 

  24. W. Zhao, W. Chiuman, J.C.F. Lam, M.A. Brook and Y. Li, Chem. Commun., 36 (2007) 3729.

    Google Scholar 

  25. H.Y. Wang, Y.F. Li, C. Zhi Huang, Talanta 72 (2007) 1698.

    CAS  Google Scholar 

  26. D. Xiong, M. Chen, H. Li Chem. Commun., 7 (2008) 3729.

    Google Scholar 

  27. S.T. Dubas, V. Pimpan, Mater. Lett, (2008) Article In press.

    Google Scholar 

  28. C.L. Schofield, A.H. Haines, R.A. Field, D.A. Russell, Langmuir 22 (2006) 6707.

    CAS  Google Scholar 

  29. Y. Chen, J. Aveyard R. Wilson, Chem. Commun., 24 (2004) 2804.

    Google Scholar 

  30. S.T. Dubas, V. Pimpan, Talanta (2008) Article In press. [31]_J.S. Bradley, in “Clusters and Colloids” (G. Schmid, Ed.), p. 469. VCH, Weinheim, 1994

    Google Scholar 

  31. H. Bönnemann, K.S. Nagabhushana, in “Encyclopedia Nanoscience and Nanotechnology” (H. Singh Nalwa Ed.), Vol. 1, p. 779. ASP, 2004.

    Google Scholar 

  32. H. Wang, X. Qiao, J. Chena, X. Wang, S. Ding, Mater. Chem. Phys. 94 (2005) 449.

    CAS  Google Scholar 

  33. J.C. Miller, J.N. Miller, Statistics and Chemometrics for Analytical Chemistry, fourth ed., Prentice Hall, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hormozi Nezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hormozi Nezhad, M.R., Tashkhourian, J. & Khodaveisi, J. Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. JICS 7 (Suppl 2), S83–S91 (2010). https://doi.org/10.1007/BF03246187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246187

Keywords

Navigation