Skip to main content
Log in

Conclusive evidence for delayed autocatalytic behavior of Mn(II) ions at a critical concentration

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The kinetics of the permanganic oxidation process of glycine, L-alanine and L-leucine in strong acid media were investigated using a spectrophotometric technique. Conclusive evidence has proven that the autocatalytic activity of Mn(II) in these reactions in strong acidic media is analogous to that of weak acid media, but in the former, Mn(II) ions should acquire a critical concentration for them to show autocatalytic characteristics. This critical concentration depends on the nature of the amino acid used. Considering the delayed autocatalytic behavior of Mn(II) ions, we herein present the rate equations and mechanisms satisfying observations for both catalytic and noncatalytic routes. The correspondence of the pseudo-order rate constants of the catalytic and noncatalytic pathways to Eyring law verify both the critical concentration as well as the delayed autocatalytic behavior concepts. In general, the onset of delayed behavior can be attributed to the concentration ratio of Mn(II) to amino acid which can be of a certain value for any particular amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Verma, M. J. Reddy, V. R. Shastry, J. Chem. Soc. Perkin Trans 2 (1976) 469.

    Google Scholar 

  2. A. A. Frost, R.G. Pearson, Kinetic and Mechanisms, Wiley, New York, 1961, p. 152.

    Google Scholar 

  3. C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Acta Phys. Chem. 26 (1980) 89.

    CAS  Google Scholar 

  4. C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Z. Phys. Chem. (Leipzig), 261 (1980) 1222.

    CAS  Google Scholar 

  5. C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Z. Phys. Chem. (Leipzig), 261 (1980) 802.

    CAS  Google Scholar 

  6. C. S. Ameta, P. N. Pande, H. L. Gupta, H. C. Chowhhry, Acta Chim. Acad. Sci. Hung. 110 (1982) 7.

    CAS  Google Scholar 

  7. L. M. Bharadwaj, P. C. Nigam, Ind. J. Chem. 8A (1981) 793.

    Google Scholar 

  8. V. S. Rao, B. Sethuram, T.N. Rao, Int. J. Chem. Kinet. 11 (1979) 165.

    CAS  Google Scholar 

  9. V. S. Rao, B. Sethuram, T.N. Rao, Oxid. Commun. 9 (1986) 11.

    CAS  Google Scholar 

  10. U. D. Mudaliar, V.R. Chourey, R.S. Verma, V.R. Shastry, Ind. J. Chem. Soc. 60 (1983) 561.

    CAS  Google Scholar 

  11. H. M. Girgis, R.M. Hassan, A.S. El-Shahawy, Bull. Fac. Sci. Univ. 16 (1987) 41.

    CAS  Google Scholar 

  12. R. M. Hassan, M.A. Mousa, M.H. Wahdan, J. Chem. Soc. Dalton. Trans 3 (1988) 605.

    Google Scholar 

  13. H. Iloukani, H. Bahrami, Int. J. Chem. Kinet. 31 (1999) 95.

    Google Scholar 

  14. B. R. Sahu, V.R. Chourey, S. Pandey, L.V. Shastry, V. R. Shastry, Ind. J. Chem. Soc. 76 (2000) 131.

    Google Scholar 

  15. H. Iloukhani, N. Rashidi, M. Moghadasi, Asian J. Chem. 12 (2000) 1209.

    CAS  Google Scholar 

  16. H. Iloukhani, S.R. Ekvan, A. A. Rafati, Phys. Chem. Liquids 41 (2003) 25.

    CAS  Google Scholar 

  17. M. Moghadasi, N. Rashidi, H. Iloukhani, Phys. Chem. Liquids 2001 (39) 267.

    CAS  Google Scholar 

  18. H. Iloukhani, M. Moazenzadeh, Phys. Chem. Liquids 39 (2001) 429.

    CAS  Google Scholar 

  19. M. Zahedi, H. Bahrami, Kinet. Catal. 45 (2004) 351.

    CAS  Google Scholar 

  20. H. Bahrami, M. Zahedi, Can. J. Chem. 82 (2004) 430.

    CAS  Google Scholar 

  21. H. Bahrami, M. Zahedi, Int. J. Chem. Kinet. 38 (2006) 1.

    CAS  Google Scholar 

  22. A. I. Vogel, Quimica Analitica Cuantitative, Vol. 1, Kapelusz, Buenos Aires, 1960, p. 382.

    Google Scholar 

  23. F. Felig, Spot Tests in Inorganic Analysis, Elsevier, Amsterdam, 1972, p. 334

    Google Scholar 

  24. A. I. Vogel, Quimica Analitica Cuantitative, Vol. 1, Kapelusz, Buenos Aires, 1953, p. 250.

    Google Scholar 

  25. R. M. Roberts, J. C. Gilbert, L. B. Rodwald, A. S. Wingrove, Modern Experimental Organic Chemistry, 2nd ed., Saunders, Philadelphia, 1985, p. 700.

    Google Scholar 

  26. K. K. Banerji, P. Nath, Bull. Chem. Soc. Jap. 42 (1969) 2038.

    CAS  Google Scholar 

  27. F. J. Andrés Ordax, A. Arrizabalaga, J.I. Martinez de Ilarduya, An. Quim. 80 (1984) 531.

    Google Scholar 

  28. F. J. Andrés Ordax, A. Arrizabalaga, R. Martinez Perez de mendiola, Studia. Chemica. 11 (1986) 303.

    Google Scholar 

  29. F. J. Andrés Ordax, A. Arrizabalaga, K. Ortega, An. Quim. 85 (1989) 218.

    Google Scholar 

  30. J. F. Perez Benito, F. Mata Perez, E. Brillas, Can. J. Chem. 65 (1987) 2329.

    CAS  Google Scholar 

  31. E. Brillas, J. A. Garrido, J. F. Perez Benito, Collect. Czech. Chem. Comun. 53 (1988) 479.

    CAS  Google Scholar 

  32. J. A. Garrido, J. F. Perez Benito, R. M. Rodrigouez, J. De Andrés, E. Brillas, J. Chem. Res. 11 (1987) 380.

    Google Scholar 

  33. J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, J. Chem. Soc. Perkin Trans 2 (1988) 107.

    Google Scholar 

  34. R. M. Rodrigouez, J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, New J. Chem. 2 (1988) 143.

    Google Scholar 

  35. J. De Andrés, E. Brillas, J. A. Garrido, J. F. Perez Benito, Gazz. Chim. Ital. 118 (1988) 203.

    Google Scholar 

  36. K. A. Kovacs, P. Grof, L. Burai, M. Riedel, J. Phys. Chem. A 108 (2004) 11026.

    CAS  Google Scholar 

  37. W. A. Waters, Q. Rev. Chem. Soc. 12 (1958) 277.

    CAS  Google Scholar 

  38. N. Ganapathisubramanian, J. Phys. Chem. 92 (1988) 414.

    CAS  Google Scholar 

  39. R. T. Powell, T. Oskin, N. Ganapathisubramanian, J. Phys. Chem. 93 (1989) 2718.

    CAS  Google Scholar 

  40. A. Arrizabalaga, F. J. Andrés Ordax, M. Y. Fernández Aránguiz, R. Peche, Int. J. Chem. Kinet. 29 (1997) 181.

    CAS  Google Scholar 

  41. F. J. Andrés Ordax, A. Arrizabalaga, J. Casado, R. Peche, React. Kinet. Catal. Lett. 44 (1991) 293.

    Google Scholar 

  42. F. J. Andrés Ordax, A. Arrizabalaga, R. Peche, M.A. Quintana, An. Quim. 87 (1992) 828.

    Google Scholar 

  43. F. J. Andrés Ordax, A. Arrizabalaga, R. Peche, M.A. Quintana, An. Quim. 88 (1992) 440.

    Google Scholar 

  44. M. J. Insausti, F. Mata-Pèrez, M.P. Alvarez-Macho, Int. J. Chem. Kinet. 27 (1995) 507.

    CAS  Google Scholar 

  45. A. Arrizabalaga, F. J. Andrés Ordax, M.Y. Fernández Aránguiz, R. Peche. Int. J. Chem. Kinet. 28 (1996) 799.

    CAS  Google Scholar 

  46. W. A. Waters, Q. Rev. Chem. Soc. 12 (1958) 277.

    CAS  Google Scholar 

  47. P. S. Radhakrishnanurti, M. D. Rao, Indian J. Chem. Soc. A 15 (1977) 524.

    Google Scholar 

  48. Y. Takezaki, C. Takeuchi, J. Chem. Phys. 22 (1954) 1527.

    CAS  Google Scholar 

  49. J.W. Moore, R. G. Pearson, Kinetic and Mechanisms, Wiley, New York, 1981, p. 42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zahedia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, H., Zahedia, M. Conclusive evidence for delayed autocatalytic behavior of Mn(II) ions at a critical concentration. JICS 5, 535–545 (2008). https://doi.org/10.1007/BF03246131

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246131

Keywords

Navigation