Skip to main content
Log in

Electromagnetic levitation—A useful tool in microgravity research

  • Electromagnetic Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electromagnetic levitation is one area of the electromagnetic processing of materials that has uses for both fundamental research and practical applications. This technique was successfully used on the Space Shuttle Columbia during the Spacelab IML-2 mission in July 1994 as a platform for accurately measuring the surface tensions of liquid metals and alloys. In this article, we discuss the key transport phenomena associated with electromagnetic levitation, the fundamental relationships associated with thermophysical property measurement that can be made using this technique, reasons for working in microgravity, and some of the results obtained from the microgravity experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Peifer, “Levitation Melting—A Survey of the State-of-the-Art,” Journal of Metals, 17(5) (1965), pp. 487–493.

    Google Scholar 

  2. C. Vives and B. Forest, “CREM: A New Casting Process Part I—Fundamental Aspect,” Light Metals 1987, ed. R. Zabreznik (Warrendale, PA: TMS, 1987), pp. 769–778.

    Google Scholar 

  3. J.P. Riquet and J.L. Meyer, “CREM: A New Casting Process Part II—Industrial Aspects,” Light Metals 1987, ed. R. Zabreznik (Warrendale, PA: TMS, 1987), pp. 779–784.

    Google Scholar 

  4. J. Szekely et al., ed., Magnetohydrodynamics in Process Metallurgy (Warrendale, PA: TMS, 1992).

    Google Scholar 

  5. S. Asai, ed., Electromagnetic Processing of Materials (Nagoya, Japan: ISIJ, 1994).

    Google Scholar 

  6. J.-H. Zong, J. Szekely, and G. Lohoefer, “Calculations and Experiments Concerning the Lifting Force and Power Absorption in the TEMPUS EML,” Acta Astronautica, 29(5) (1993), pp. 371–378.

    Google Scholar 

  7. E. Schwartz et al., “The Computation of the Electromagnetic Force Fields and Transport Phenomena in Levitated Metallic Droplets in the Microgravity Environment,” Magnetohydrodynamics in Process Metallurgy, ed. J. Szekely et al. (Warrendale, PA: TMS, 1992), pp. 81–87.

    Google Scholar 

  8. E. Schwartz and J. Szekely, “The Shape of Liquid Metal Droplets in Electromagnetic Levitation Experiments Considering Internal Fluid Flow,” Experimental Methods for Microgravity Materials Science, ed. R. Schiffman (Warrendale, PA: TMS, 1994), pp. 73–79.

    Google Scholar 

  9. J. Szekely, Fluid Flow Phenomena in Metals Processing (New York: Academic Press, 1979), p. 208.

    Google Scholar 

  10. E. Schwartz and J. Szekely, “Mathematical Modeling: An Essential Component of the Design of Space Experiments,” Materials Processing in the Computer Age II, ed. V.R. Voller, N. El-Kaddah, and S.P. Marsh (Warrendale, PA: TMS, 1995), pp. 147–161.

    Google Scholar 

  11. A. Gagnoud, J. Etay, and M. Gamier, “The Levitation Melting Process Using Cold Crucible Technique,” Transactions ISIJ, 28 (1988), pp. 36–40.

    CAS  Google Scholar 

  12. A. Gagnoud and I. Leclercq, “Free Boundary Problem in Electromagnetic Levitation Melting and Continuous Casting,” IEEE Transactions on Magnetics, 24(1) (1988), pp. 256–268.

    Google Scholar 

  13. A.J. Mestel, “Magnetic Levitation of Liquid Metals,” Journal of Fluid Mechanics, 117 (1982), pp. 45–70.

    Google Scholar 

  14. A.D. Sneyd and H.K. Moffatt, “Fluid Dynamical Aspects of the Levitation-Melting Process,” Journal of Fluid Mechanics, 117 (1982), pp. 45–70.

    CAS  Google Scholar 

  15. G. Lohoefer, “Theory of an Electromagnetically Levitated Metal Sphere—(I) Absorbed Power,” SIAM Journal of Applied Mathematics, 49 (1989), pp. 567–581.

    Google Scholar 

  16. G. Lohoefer, “Force and Torque of an Electromagnetically Levitated Metal Sphere,” Quarterly of Applied Mathematics, 51(3) (1993), pp. 495–518.

    Google Scholar 

  17. N. El-Kaddah and F.A. Acosta-Gonzalez, “Mathematical Model for the Shaping of Molten Metal by an Electromag netic Field,” Casting of Near Net Shape Products, ed. Y. Sahai (Warrendale, PA: TMS, 1988), pp. 423–437.

    Google Scholar 

  18. N. El-Kaddah and T.T. Natarajan, “The Influence of Coil Design on Melt Shape in Electromagnetic Levitation Melt-ing,” Proceedings of the Sixth International Iron and Steel Congress (Nagoya, Japan: ISIJ, 1990), pp. 380–387.

    Google Scholar 

  19. U.B. Sathuvalli and Y. Bayazitoglu, “Electromagnets Force Calculations for a Conical Coil,“ Metallurgical Transactions B, 24(5) (1993), pp. 737–748.

    Google Scholar 

  20. P.V.R. Suryanarayana and Y. Bayazitoglu, “Effect of Static Deformation and External Forces on the Oscillations of Levitated Droplets,” Phys. Fluids A, 3(5) (1991), pp. 967–977.

    CAS  Google Scholar 

  21. N. El-Kaddah and J. Szekely, “The Electromagnetic Force Field, Fluid Flow Field, and Temperature Profiles in Levitated Metal Droplets,” Metallurgical Transactions B, 14 (1983), pp. 401–410.

    Google Scholar 

  22. J-H. Zong, B. Li, and J. Szekely, “The Electrodynamic and Hydrodynamic Phenomena in Magnetically Levitated Mol-ten Droplets—I. Steady State Behavior),” Acta Astronautica, 26(6) (1992), pp. 435–449.

    Google Scholar 

  23. E. Schwartz, Measurement of the Surface Tension of Electro-magnetically-Levitated Droplets in Microgravity, Ph.D. thesis, Department of Materials Science and Engineering, MIT (1995).

    Google Scholar 

  24. M.E. Fraser et al., “Surface Tension Measurements on Pure Liquid Iron and Nickel by an Oscillating Drop Tech-nique,” Metallurgical Transactions, 2 (1971), pp. 817–823.

    CAS  Google Scholar 

  25. H. Soda, A. McLean, and W.A. Miller, “The Influence of Oscillation Amplitude on Liquid Surface Tension Measure-ments with Levitated Metal Droplets,” Metallurgical Transactions, 9B (1978), pp. 145–147.

    CAS  Google Scholar 

  26. B.J. Keene, The Use of a Fourier Analyser for Determination of the Surface Tension of Liquid Metals by the Levitating Drop Technique, NPL Report DMA(A) 56, NPL, Teddington, U.K. (1982).

    Google Scholar 

  27. l. Egry et al., “Surface Tension Measurements of Liquid Metals Using Levitation, Microgravity, and Image Processing,” International Journal of Thermophysics, 13(1) (1992), pp 65–74.

    CAS  Google Scholar 

  28. J.W.S. Rayleigh, “On the Capillary Phenomena of Jets,” Proceedings of the Royal Society of London, 29 (1879), pp. 71–97

    Google Scholar 

  29. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals (Oxford, England: Clarendon Press, 1988).

    Google Scholar 

  30. R. Willnecker, D.M. Herlach, and B. Feuerbacher, “Containerless Processing of Bulk Fe-Ni Melts,” Applied Physics Letters, 49(20) (1986), pp. 1339–1341.

    CAS  Google Scholar 

  31. H.J. Fecht and W.L. Johnson, “A Conceptual Approach for Noncontact Calorimetry in Space,” Review of Scientifiic Instruments, 62(5) (1991), p. 1299–1303.

    CAS  Google Scholar 

  32. R.K. Wunderlich et al., “Principles of Non-Contact A. C. Calorimetry,” Containerless Processing: Techniques and Applications, ed. W. Hofmeister and R. Schiffman (Warrendale, PA: TMS, 1993), pp. 51–56.

    Google Scholar 

  33. H. Lamb, “On the Oscillations of a Viscous Liquid Globe,” Proceedings of the London Math. Society, 13(1) (1881), pp. 51–66.

    Google Scholar 

  34. S. Sauerland, Messung der Oberflaechenspannung at levitiertenfluessigen Metalitropfen, Ph.D. thesis, DLR Cologne/ University of Aachen, Germany (1993).

    Google Scholar 

  35. I. Egry and J. Szekely, “The Measurement of Thermophysical Properties in Microgravity Using Electro-magnetic Levitation,” Adv. Space Res., 11(7) (1991), pp. 263–266.

    CAS  Google Scholar 

  36. S. Sauerland et al., “Magnetic Field Effects on the Oscillation Spectrum of Levitated Drops,” Containerless Processing: Techniques and Applications, ed. W. Hofmeister and R. Schiffman (Warrendale, PA: TMS, 1993), pp. 65–69.

    Google Scholar 

  37. D.L. Cummings and D.A. Blackburn, “Oscillations of Magnetically Levitated Aspherical Droplets,” Journal of Fluid Mechanics, 224 (1991), pp. 395–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekely, J., Schwartz, E. & Hyers, R. Electromagnetic levitation—A useful tool in microgravity research. JOM 47, 50–53 (1995). https://doi.org/10.1007/BF03221177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221177

Keywords

Navigation