Skip to main content
Log in

Developments in metallic materials for aerospace applications

  • Aerospace Material
  • Advanced Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-performance aerospace systems are creating a demand for new materials, not only for airframe and engine applications, but for missile and space systems as well. Recently, advances have been made in metallic materials systems based on magnesium, aluminum, titanium and niobium using a variety of processing methods, including ingot casting, powder metallurgy, rapid solidification and composite technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Rooney, “Structural and Material Considerations for Advanced Fighters,” Evolution of Aircraft / Aerospace Structures and Materials (Dayton, OH: 1985), pp. 8–1–8–6.

    Google Scholar 

  2. J. Wadsworth, T.G. Nieh and J.J. Stephens, “Recent Advances in Aerospace Refractory Metal Alloys,” Inter. Mater. Reviews, 33 (3) (1988), pp. 131–150.

    CAS  Google Scholar 

  3. C.A. Henshall, J. Wadsworth, M.J. Reynolds and A.J. Barnes, “Design and Manufacture of a Superplastic-Formed Aluminum-Lithium Component,” Materials and Design, VIII (6) (1987), pp. 324–330.

    Google Scholar 

  4. R.E. Lewis et al., “Microstructure and Properties of Al-Li-Cu-Mg-Zr (8090) Heavy Section Forgings,” Journal de Physique, 48, colloque C3, supplement 9 (1987), pp. C3–643–652.

    Google Scholar 

  5. H. Jones, A. Joshi, R.G. Rowe and F.H. Froes, “The Current Status of Rapid Solidification of Magnesium Base and Titanium Base Alloys,” Int. Journal Powder Metallurgy, 23 (1) (1987), pp. 13–24.

    CAS  Google Scholar 

  6. F.H. Froes, Y-W. Kim and F. Hehmann, “Rapid Solidification of Al, Mg, and Ti,” Journal of Metals, 39 (8) (1987), pp. 14–21.

    CAS  Google Scholar 

  7. H. Jones, Rapid Solidification of Metals and Alloys, monograph no. 8, the Institution of Metallurgists, London (1982).

    Google Scholar 

  8. N.J. Grant, Rapid Solidification Technology (Metals Park, OH: ASM, 1983), pp. 361–380.

    Google Scholar 

  9. F.H. Froes, W.E. Quist and S.K. Das, “Advanced Lightweight Metals Using Rapid Solidification,” Proceedings of International Conference on PM Aerospace Materials (Shrewsbury, England: MPR, Publishing Services, Ltd., 1988), pp. 16.1–16.29.

    Google Scholar 

  10. F.H. Froes, Y.-W. Kim and S. Krishnamurthy, “Lightweight Metals Using Rapid Solidification,” Powder Metallurgy and Related High Temperature Materials, ed. P. Ramakrishnan (Rheinfelden, Switzerland: Trans Tech Publications, 1989), pp. 249–274.

    Google Scholar 

  11. C.M. Adam and R.E. Lewis, “High Performance Aluminum Alloys,” Rapidly Solidified Crystalline Alloys, ed. S.K. Das, B.H. Kear and C.M. Adam (Warrendale, PA: TMS, 1985), pp. 157–183.

    Google Scholar 

  12. Alcoa Techbrief, “Wrought PM Alloys—High Strength Alloys CW67,” (1986), p. 3.

    Google Scholar 

  13. R.E. Lewis et al., “Development of Advanced Aluminum Alloys from Rapidly Solidified Powders for Aerospace Structural Applications,” technical report AFWAL-TR-86-4108, Wright-Patterson Air Force Base, OH (October 1986).

    Google Scholar 

  14. A.E. Vidoz et al., “Ultralow-Density, High-Modulus, and High-Strength RSP Al-Li-Be Alloys,” Rapidly Solidified Powder Aluminum Alloys, ASTM STP 890, ed. M.E. Fine and E.A. Starke, Jr. (Philadelphia, PA: ASTM, 1986), pp. 237–251.

    Chapter  Google Scholar 

  15. S.K. Das, K. Okazaki and C.M. Adam, “Applications of Rapid Solidification Processing to High Temperature Alloy Design,” High Temperature Alloys: Theory and Design, ed. J.O. Stiegler (Warrendale, PA: TMS, 1984), p. 451–471.

    Google Scholar 

  16. S.L. Langenbeck, W.M. Griffith, G.J. Hildeman and J.W. Simon, “Development of Dispersion-Strengthened Aluminum Alloys,” Rapidly Solidified Powder Aluminum Alloys, ASTM STP 890, ed. M.E. Fine and E.A. Starke, Jr. (Philadelphia, PA: ASTM, 1986), pp. 410–422.

    Chapter  Google Scholar 

  17. D. Raybould, S. Udvardy, M. Zedalis and S.K. Das, “Forging of Rapidly Solidified Al-Fe-V-Si Alloys for High Temperature Applications,” Rapidly Solidified Materials: Properties and Processing, ed. P.W. Lee and J.H. Moll (Metals Park, OH: ASM, 1988), pp. 59–66.

    Google Scholar 

  18. R.L. Bickerdike et al., “The Preparation and Properties of Vapour Deposited Al-Cr-Fe Alloys,” Rapidly Solidified Materials, ed. P.W. Lee and R.S. Carbonara (Metals Park, OH: ASM, 1985), pp. 145–152.

    Google Scholar 

  19. R. Sundaresan and F.H. Froes, “Mechanical Alloying,” Journal of Metals, 39 (8) (1987), pp. 22–27.

    CAS  Google Scholar 

  20. G.H. Narayana et al., “Important Considerations in the Production of P/M Aluminum-Lithium Alloys,” Processing of Structural Metals by Rapid Solidification, ed.F.H. Froes and S.J. Savage (Metals Park,OH: ASM, 1987), pp. 321–336.

    Google Scholar 

  21. T.G. Nieh, J. Wadsworth and P.S. Gilman, “Extended Ductility at High Strain Rates in a Mechanically Alloyed Aluminum Alloy,” Scripta Metall., 19 (1985), pp. 1375–1378.

    CAS  Google Scholar 

  22. H. Jones, A. Joshi, R.G. Rowe and F.H. Froes, “The Current Status of Rapid Solidification of Magnesium Base and Titanium Base Alloys,” Int. Journal of Powder Metallurgy, 23 (1) (1987), pp. 13–24.

    CAS  Google Scholar 

  23. A. Joshi, R. E. Lewis and H. Jones, “Rapidly Solidified Mg-Al-Zn-X Alloys,” International Journal of Rapid Solidification in press

  24. D. Eylon, S. Fujishiro, P.J. Postans and F.H. Froes, “High-Temperature Titanium Alloys—A Review,” Titanium Technology: Present Status and Future Trends, ed. F.H. Froes, D. Eylon and H.B. Bomberger (Dayton, OH, TDA, 1985), pp. 87–94.

    Google Scholar 

  25. Harry A. Lipsitt, “Titanium Aluminides—An Overview,” High-Temperature Ordered Intermetallic Alloys, vol. 39, ed. C.C. Koch, C.T. Liu and N.S. Stoloff (Pittsburgh, PA: MRS, 1985), pp. 351–364.

    Google Scholar 

  26. R.A. Perkins, K.T. Chiang and G.H. Meier, “Formation of Alumina on Ti-Al Alloys,” Scripta Metall., 21 (1987), pp. 1505–1510.

    CAS  Google Scholar 

  27. F.H. Froes and D. Eylon, “Powder Metallurgy of Titanium Alloys—A Review,” Titanium Technology: Current Status and Future Trends, ed. F.H. Froes, D. Eylon and H.B. Bomberger (Dayton, OH: TDA, 1985), pp. 49–59.

    Google Scholar 

  28. R.G. Rowe and F.H. Froes, “Titanium Rapid Solidification—Alloys and Processes,” Processing of Structural Metals by Rapid Solidification, ed. F.H. Froes and S.J. Savage (Metals Park, OH: ASM, 1987) pp. 163–173.

    Google Scholar 

  29. R.G. Rowe, A.I. Taub and F.H. Froes, “Developments in Rapidly Solidified Nickel and Titanium Intermetallics,” presented at the ASM European Symposium on Advanced Materials and Processing Techniques for Structural Applications, Paris, France (7–9 September 1987).

    Google Scholar 

  30. D. Eylon, W.J. Barice and F.H. Froes, “Beta Titanium Alloy Castings for Demanding Fatigue Applications,” Technology for Premium Quality Castings, ed. E.M. Dunn and D.R. Durham (Warrendale, PA: TMS, 1988), pp. 29–39.

    Google Scholar 

  31. R.A. Perkins, Advanced Compact Reactor Systems (Washington, D.C.: National Academy Press, 1982), pp. 282–325.

    Google Scholar 

  32. R.A. Perkins, K.T. Chiang and G.H. Meier, “Formation of Alumina on Nb-Al Alloys,” Scripta Met., 22 (1988), pp. 419–424.

    CAS  Google Scholar 

  33. J. Wadsworth, C.A. Roberts and E.H. Rennhack, “Creep Behavior of Hot Isostatically Pressed Niobium Alloy Powder Composites,” Journal of Materials Science, 17 (1982), pp. 2539–2546.

    Google Scholar 

  34. C Himmelblau et al., “Mechanical Properties of HIP Columbium C-103 Alloy,” Progress in Powder Metallurgy, vol. 39, ed. H.S. Nayar, S.M. Kaufman and K.E. Meiners (Princeton, NJ: MPIF, 1984), pp. 525–542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsworth, J., Froes, F.H. Developments in metallic materials for aerospace applications. JOM 41, 12–19 (1989). https://doi.org/10.1007/BF03220217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220217

Keywords

Navigation