Skip to main content
Log in

Comparison of the properties of poly(butylene terephthalate) nanocomposite fibers with different organoclays

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The aims of this study were to investigate the intercalation of polymer chains with organoclays and improve the thermo-mechanical properties of poly(butylene terephthalate) (PBT) hybrids by comparing PBT hybrids synthesized using two different organoclays. The organoclays; dodecyltriphenylphosphonium-montmorillonite (C12PPh-MMT) and dodecyltriphenylphosphonium-mica (C12PPh-Mica), were used to fabricate the PBT hybrid fibers. Variations in the properties of the hybrid fibers with the organoclays within the polymer matrix, as well as the draw ratio (DR), are discussed. The thermo-mechanical properties and morphologies of the PBT hybrid fibers were characterized using differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, electron microscopy and mechanical tensile properties analysis. The nanostructures of the hybrid fibers were determined using both scanning and transmission electron microscopies, which showed some of the clay layers to be well dispersed within the matrix polymer, although some clustered or agglomerated particles were also detected. The thermal properties of the hybrid fibers were found to be better than those of the pure PBT fibers at a DR = 1. The tensile mechanical properties of the C12PPh-MMT hybrid fibers were found to worsen with increasing DR. However, the initial moduli of the C12PPh-Mica hybrid fibers were found to slightly increase on increasing the DR from 1 to 18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Nogales, G. Broza, Z. Roslaniec, K. Schulte, I. Syics, and B. S. Hsiao,Macromolecules,37, 7669 (2004).

    Article  CAS  Google Scholar 

  2. D. Wu, C. Zhou, W. Yu, and X. Fan,J. Polym. Sci.; Part B: Polym. Phys.,43, 2807 (2005).

    Article  CAS  Google Scholar 

  3. J.-H. Chang and R. J. Farris,Polym. J.,27, 780 (1995).

    Article  CAS  Google Scholar 

  4. J. M. Park and Y. H. Park,Macromol. Res.,13, 128 (2005).

    Article  CAS  Google Scholar 

  5. J. Y. Kim, S. W. Kang, and S. H. Kim,Macromol. Res.,13, 19 (2005).

    Article  CAS  Google Scholar 

  6. G. Lagaly,Appl. Clay. Sci.,15, 1 (1999).

    Article  CAS  Google Scholar 

  7. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito,J. Appl. Polym. Sci.,5, 119 (1995).

    Article  Google Scholar 

  8. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito,J. Polym. Sci.; Part A: Polym. Chem.,31, 2493 (1993).

    Article  CAS  Google Scholar 

  9. E. P. Giannelis,Adv. Mater.,8, 29 (1996).

    Article  CAS  Google Scholar 

  10. J.-H. Chang, B. S. Seo, and D. H. Hwang,Polymer,43, 2969 (2002).

    Article  CAS  Google Scholar 

  11. K. Yano, A. Usuki, and A. Okada,J. Polym. Sci.; Part A: Polym. Chem.,35, 2289 (1997).

    Article  CAS  Google Scholar 

  12. J. M. Garcia-Martinez, O. Laguna, S. Areso, and E. P. CollarJ. Polym. Sci.; Part B: Polym. Phys.,38, 1564 (2000).

    Article  CAS  Google Scholar 

  13. S. H. Hwang, S. W. Paeng, J. Y. Kim, and W. Huh,Polym. Bull.,49, 329 (2003).

    Article  CAS  Google Scholar 

  14. D. Wang, J. Zhu, Q. Yao, and C. A. Wilkie,Chem. Mater.,14, 3837 (2002).

    Article  CAS  Google Scholar 

  15. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia,Appl. Clay Sci.,12, 11 (1999).

    Article  Google Scholar 

  16. J.-H. Chang, S. J. Kim, and S. Im,Polymer,45, 5171 (2004).

    Article  CAS  Google Scholar 

  17. J.-H. Chang and M. K. Mun,J. Appl. Polym. Sci.,100, 1247 (2006).

    Article  CAS  Google Scholar 

  18. S. H. Hsiao, G.. S. Liou, and L. M. Chang,J. Appl. Polym. Sci.,80, 2067 (2001).

    Article  CAS  Google Scholar 

  19. C. Zilig, R. Mulhaupt, and J. Finter,Macromol. Chem. Phys.,200, 661 (1999).

    Article  Google Scholar 

  20. Y. Ke, J. Lu, X. Yi, X, Zhao, and Z. Qi,J. Appl. Polym. Sci.,78, 808 (2000).

    Article  Google Scholar 

  21. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong,J. Polym. Sci.; Part B: Polym. Phys.,40, 2661 (2002).

    Article  CAS  Google Scholar 

  22. F. Li, J. Ge, P. Honigfort, S. Fang, J. C. Chen, F. Harris, and S. Cheng,Polymer,40, 4987 (1999).

    Article  CAS  Google Scholar 

  23. A. Agag and T. Takeichi,Polymer,41, 7083 (2000).

    Article  CAS  Google Scholar 

  24. M. Hussain, R. J. Varley, Z. Mathys, Y. B. Cheng, and G. P. Simon,J. Appl. Polym. Sci.,91, 1233 (2004).

    Article  CAS  Google Scholar 

  25. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul,Polymer,43, 5915 (2002).

    Article  CAS  Google Scholar 

  26. H. R. Fischer, L. H. Gielgens, and T. P. M. Koster,Acta. Polym.,50, 122 (1999).

    Article  CAS  Google Scholar 

  27. X. S. Petrovic, L. Javni, A. Waddong, and G.. J. Banhegyi,J. Appl. Polym. Sci.,76, 133 (2000).

    Article  CAS  Google Scholar 

  28. J. Wen and G. L. Wikes,Chem. Mater.,8, 1667 (1996).

    Article  CAS  Google Scholar 

  29. T. Lan and T. J. Pinnavaia,Chem. Mater.,6, 2216 (1994).

    Article  CAS  Google Scholar 

  30. K. Masenelli-Varlot, E. Reynaud, G. Vigier, and J. Varlet,J. Polym. Sci.; Part B: Polym. Phys.,40, 272 (2004).

    Article  Google Scholar 

  31. J. W. Cho and D. R. Paul,Polymer,42, 1083 (2001).

    Article  CAS  Google Scholar 

  32. J.-H. Chang, M. K. Mun, and I. C. Lee,J. Appl. Polym. Sci.,98, 2009 (2005).

    Article  CAS  Google Scholar 

  33. M.-K. Mun, J. C. Kim, and J.-H. Chang,Polym. Bull.,57, 797 (2006).

    Article  CAS  Google Scholar 

  34. L. Chen, S. C. Wong, and S. J. Pisharath,J. Appl. Polym. Sci.,88, 3298 (2003).

    Article  CAS  Google Scholar 

  35. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito,J. Mater. Res.,8, 1185 (1993).

    Article  CAS  Google Scholar 

  36. W. A. Curtin,J. Am. Ceram. Soc.,74, 2837 (1991).

    Article  CAS  Google Scholar 

  37. D. Shia, Y. Hui, S. D. Burnside, and E. P. Giannelis,Polym. Eng. Sci.,27, 887 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hae Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JC., Chang, JH. Comparison of the properties of poly(butylene terephthalate) nanocomposite fibers with different organoclays. Macromol. Res. 15, 449–458 (2007). https://doi.org/10.1007/BF03218813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218813

Keywords

Navigation