Skip to main content
Log in

The cost benefit ratio of enantiomeric drugs

  • Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Several drugs possess a chiral structure, i.e. they contain one or more stereogenic centres in their molecule. While naturally occurring active principles usually contain a single enantiomer, most chiral drugs produced by chemical synthesis are used in the form of racemic mixtures of two or more diastereoisomers. These stereoisomers (including enantiomers) may interact in different ways with biological structures and, therefore, may exhibit widely different pharmacokinetic and pharmacodynamic properties. In the pharmaceutical industry, partly in response to increasing demands raised by regulatory authorities, these considerations justify the current trend to develop the single enantiomer characterized by the most favourable profile of activity (eutomer).

The availability of new chemical and analytical technologies facilitates stereoselective synthetic processes and separation of individual enantiomers from racemic mixtures. Any decision to develop a drug as a single enantiomer, however, should be made only after careful evaluation of the cost-benefit ratio, i.e. when the advantages of the eutomer in terms of efficacy and tolerability outweigh the associated increase in production and development costs with respect to the racemic drug.

This article takes into consideration synthetic procedures and pharmacological profiles for a number of chiral drugs in therapeutic use (naproxen, labetalol, and warfarin) or selected for clinical development, such as the beta-blocker dilevalol or the mucokinetic agent 3′-hydroxyfarrerol. These examples demonstrate that the kinetic, pharmacological and toxicological properties of individual enantiomers need to be clearly characterized before any decision can be made concerning the development of a chiral drug. The choice of preferentially developing a single enantiomer should be based on careful consideration of production and development costs and actual therapeutic advantages especially in terms of improved safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mason S. (1986): The origin of chirality in nature. TIPS, 1, 20–23.

    Google Scholar 

  2. Mason S. (1984): The left hand of nature. New Scientist, 101, 10–14.

    CAS  Google Scholar 

  3. Ariens E.J. (1986): Chirality in bioactive agents and its pitfalls. TIPS, 1, 200–205.

    Google Scholar 

  4. Drayer D.E. (1986): Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans. Clin. Pharmacol. Ther., 40, 125–132.

    Article  CAS  PubMed  Google Scholar 

  5. Nation RJ. (1994): Chirality in new drug development. Clin. Pharmacokinet., 27, 249–255.

    Article  CAS  PubMed  Google Scholar 

  6. Crossley R. (1992). The relevance of chirality to the study of biological activity. Tetrahedron, 48, 8155–8178.

    Article  CAS  Google Scholar 

  7. Ariens E.J. (1984): Stereochemistry. A basis for sophisticated nonsense in clinical pharmacology. Eur. J. Clin. Pharmacol., 26, 663–668.

    Article  CAS  PubMed  Google Scholar 

  8. Ariens E.J., Wuis E.W. (1987): Bias in pharmacokinetics and clinical pharmacology. Clin. Pharmacol. Ther., 42, 361–363.

    Article  CAS  PubMed  Google Scholar 

  9. Walle T., Walle U.K. (1986): Pharmacokinetic parameters obtained with racemates. TIPS, 1, 155–158.

    Google Scholar 

  10. Lehmann P.A. (1986): Stereoisomerism and drug action. TIPS, 1, 281–285.

    Google Scholar 

  11. Bruggink K.A., Hulshof L.A., Sheldon R.A. (1990): Industrial scale resolutions of racemates. Pharm. Manufact. Intern., 139–146.

  12. Valcavi U. (1992): Uso di enzimi nella produzione di Fine Chemicals. Cronache Farmaceutiche, 35, 216–220.

    Google Scholar 

  13. Perucca E., Richens A. (1989): Biotransformation. In: Levy R.H., Dreifuss F.E., Mattson R.H., Meldrum B., Penry J.K., (Eds). Antiepileptic Drugs. New York, Raven Press, pp 23–49.

    Google Scholar 

  14. Toon S., Low L.K., Gibaldi M., et al. (1986): The warfarin-sulfynpyrazone interaction. Stereochemical considerations. Clin. Pharmacol. Ther., 39, 16–24.

    Article  Google Scholar 

  15. Drayer D. (1993): Int. Pharm. J., 7 (Suppl 1), S116.

    Google Scholar 

  16. Anonymous. (1992): Script, 14, 1705.

  17. Campbell D.B. (1990): The development of chiral drugs. Acta Pharm. Nord., 2, 217–226.

    CAS  PubMed  Google Scholar 

  18. Campbell D.B. (1990): Stereoselectivity in clinical pharmacokinetics and drug development. Eur. J. Drug Metab. Pharmacokinet., 15, 109–125.

    Article  CAS  PubMed  Google Scholar 

  19. Ariens E.J. (1989): Pharmacol. Toxicol., 64, 319–320.

    Article  CAS  PubMed  Google Scholar 

  20. Grant S.M., Heel R.C. (1991): Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy and disorders of motor control. Drugs, 41, 889–926.

    Article  CAS  PubMed  Google Scholar 

  21. Tobert J.A., Cirillo V.J., Hitzenberger G., et al. (1981): Enhancement of uricosuric properties of indacrinone by manipulation of the enantiomeric ratio. Clin. Pharmacol. Ther., 9, 344–350.

    Article  Google Scholar 

  22. Scott A.K. (1991): Stereoisomers in clinical pharmacology. Drug News Perspect., 4, 476–482.

    Google Scholar 

  23. Dollery C.D. (1991): Therapeutic Drugs, vol. 2. Edinburgh, Churchill-Livingstone, pp. N30-3.

  24. Syntex (1972): US Patent 3.637.767.

  25. Zambon (1985): Eur. Patent 143.371.

  26. Zambon (1987): US Patent 4.697.036.

  27. Zambon (1988): US Patent 4.697.507.

  28. Paradies H.H. (1992): Asymmetric synthesis of 2-aryl-propionic acids. Pharm. Manufact. Intern. 171–174.

  29. Evans A.M. (1992): Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal antiinflammatory drugs. Eur. J. Clin. Pharmacol. 42, 237–256.

    Article  CAS  PubMed  Google Scholar 

  30. Day R.O., Williams K.M., Graham G.G., Lee E.J.D., Knihinicki R.D., Champion G.D. (1988): Stereoselective disposition of ibuprofen enantiomers in synovial fluid. Clin. Pharmacol. Ther., 43, 480–487.

    Article  CAS  PubMed  Google Scholar 

  31. Allen and Hanburys (1971): US Patent 4.012.244.

  32. Schering-Plough (1984): Eur. Patent Appl. 92787.

  33. Brittain R.T., Drew G.M., Levy G.P. (1982): The alpha- and beta-adrenoceptor blocking potencies of labetalol and its individual stereoisomers in anaesthetized dogs and in isolated tissues. Br. J. Pharmacol., 77, 105–114.

    CAS  PubMed  Google Scholar 

  34. Clark J.A., Zimmerman H.J., Palmer L.A. (1990): Labetalol hepatotoxicity. Ann. Int. Med., 113, 210.

    CAS  PubMed  Google Scholar 

  35. Wisconsin Alumni Research Foundation (1947): US Patent 2.427.758.

  36. O’Reilly R.A. (1976): The stereoselective interaction of warfarin and metronidazole in man. N. Engl. J. Med., 295, 354–357.

    Article  PubMed  Google Scholar 

  37. Choonara J.A., Cholerton S., Haynes B.P., Breckenridge A.M., Park B.K. (1986): Stereoselective interaction between the R enantiomer of warfarin and cimetidine. Br. J. Clin. Pharmacol., 21, 271–277.

    CAS  PubMed  Google Scholar 

  38. Conti M., Magistretti M.J. (1990): IdB 1031, a novel flavanone with antioxidant and mucokinetic activities. Pharmacol. Res., 22 (Suppl. 2), 122.

    Article  Google Scholar 

  39. Kishimoto Y., Sakato Y., Tsukamoto T. (1956): Pharmaceutical studies on fern flavonol glucosides ofDiclanopteris dichotoma. J. Pharm. Soc. Jpn., 76, 246.

    CAS  Google Scholar 

  40. Bombardelli E., Gabetta B., Magistretti M.J. (1989): Eur. Patent 0133053.

  41. Pifferi G., Vitali R., Arrigoni-Martelli E. (1992): Synthesis and mucokinetic activity of 3′-hydroxyfarrerol enantiomers. 12th International Symposium on Medicinal Chemistry, Basel (Switzerland), September 13–17, 1992, abstract P-0466.

  42. Biffi C., Gabetta B., Pace R., Pifferi G. (1992): Synthesis of 3′-hydroxyfarrerol enantiomers. 40th Annual Congress on Medicinal Plant Research, Trieste (Italy), September 1–5, 1992, abstract p. 147.

  43. Biffi C., Gabetta B., Pace R., Pifferi G. (1992): HPLC chiral resolution of 3′-hydroxyfarrerol enantiomers. 6th Convegno Nazionale Societa’ Italiana di Fitochimica, Fiuggi (Italy), May 21–23, 1992, Abstract.

  44. Magistretti M.J., Conti M., Malandrino S. (1992): Mucokinetic activity of 3′-hydroxyfarrerol enantiomers. Pharmacol. Res., 26 (Suppl 1), 62.

    Article  Google Scholar 

  45. Ursini F., Maiorino M., Morazzoni P., Roveri A., Pifferi G. (1992): A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Rad. Biol. Med., 16, 547–553.

    Article  Google Scholar 

  46. Silverman B.B.: The Organic Chemistry of Drug Design and Drug Action. New York, Academic Press, p. 76.

  47. Jack D.B. (1993): Chirality-does it really matter? Scrip. October, 6–7.

  48. Marzo A. (1993): How incoming guidelines on chiral drugs could impact on he international scenery of drug development. Boll. Chim. Farm., 132, 269.

    Google Scholar 

  49. Tucker G.P. (1993): Stereoisomers in clinical practice: the good, the bad and the ugly. Int. Pharm. J., 7 (Suppl. 1), S117.

    Google Scholar 

  50. Beary J.F. (1992): Chirality and drug development. Lancet, 339, 495.

    Article  PubMed  Google Scholar 

  51. Ronfeld R. (1992): Scrip, 1730, 27.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pifferi, G., Perucca, E. The cost benefit ratio of enantiomeric drugs. Eur. J. Drug Metab. Pharmacokinet. 20, 15–25 (1995). https://doi.org/10.1007/BF03192284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192284

Keywords

Navigation