Skip to main content
Log in

Efficient solving methods exploiting sparsity of matrix in real-time multibody dynamic simulation with relative coordinate formulation

  • Materials & Fracture · Solids & Structures · Dynamics & Control · Production & Design
  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves thenxn sparse coefficient matrix for the accelerations, wheren denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimensionnxn to an equivalent problem of dimension 6×6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amirouche, F. M. L., 1992,Computational Methods in Multibody Dynamics, Prentice-Hall International, Inc.

  • Bae, D. S., Lee, J. K., Cho, H. J. and Yae, H., 2000, “An Explicit Integration Method for Realtime Simulation of Multibody Vehicle Models,”Computational Methods in Applied Mechanics and Engineering, Vol. 187, pp. 337–350.

    Article  MATH  Google Scholar 

  • Besinger, F. H., Cebon, D. and Cole, D. J., 1995, “Force Control of a Semi-Active Damper,”Vehicle System Dynamics, Vol. 24, pp. 695–723.

    Article  Google Scholar 

  • Choi, G. J., Yoo, Y. M., Lee, K. P., Yoon, Y. S., 2000, “A Real-Time Multibody Vehicle Dynamic Analysis Method Using Suspension Composite Joints,”International Journal of Vehicle Design, Vol. 24, pp. 259–273.

    Article  Google Scholar 

  • Cuadrado, J., Cardenal, J. and Bayo, E., 1997, “Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics,”Multibody System Dynamics, Vol. 1, pp. 259–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Jennings, A., 1977,Matrix Computation for Engineers and Scientists, John Wiley & Sons.

  • Lee, K. P. and Yoon, Y. S., 1998, “Efficiency Comparison of Multibody Dynamic Analysis Algorithms for Real-Time Simulation,”JSME International Journal, Series C, Vol. 41, pp. 813–821.

    Google Scholar 

  • Serban, R., Negrut, D., Haug, E. J. and Potra, F. A., 1997, “A Topology-Based Approach for Exploiting Sparsity in Multibody Dynamics in Cartesian Formulation,”Mechanics of Structures and Machines, Vol. 25, pp. 379–396.

    Article  Google Scholar 

  • Tewarson, R. P., 1972,Sparse Matrices, New York: Academic Press.

    Google Scholar 

  • Wang, J. T. and Huston, R. L., 1987, “Kane’s Equations with Undetermined Multipliers-Approach to Constrained Multibody Systems,”ASME Journal of Applied Mechanics, Vol. 54, pp. 424–429.

    Article  MATH  Google Scholar 

  • Wehage, R. A. and Haug, E. J., 1982, “Generalized Coordinate Partitioning of Dimension Reduction in Analysis of Constrained Dynamic Systems,”ASME Journal of Mechanical Design, Vol. 104, pp. 247–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choi Gyoojae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, G., Yoo, Y. & Im, J. Efficient solving methods exploiting sparsity of matrix in real-time multibody dynamic simulation with relative coordinate formulation. KSME International Journal 15, 1090–1096 (2001). https://doi.org/10.1007/BF03185089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185089

Key Words

Navigation