Skip to main content
Log in

Unsteady flow and diaphragm motion in total artificial heart

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Unsteady flow and diaphragm motion in the phoenix artificial heart were studied using a CFD solver combined with an in-house developed FEM code. In diastole, the initially egg-shaped diaphragm deflates and forms two large depressions on the two sides and a small one on the round part. Vortices form in the blood chamber. In systole, the diaphragm inflates and pushes the blood to flow out through the opened outlet. The wall shear stress distribution is also strongly dependent on the flow field as well as the diaphragm motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wei, K. K. Cheng, D. Y. Tung, C. Y Chang, W. M. Wan and Y. C. Chuang, Successful use of Phoenix-7 total artificial heart,Transplantation Proceedings. 30 (1998) 3403–3404.

    Article  Google Scholar 

  2. D. A. Cooley, The total artificial heart,Nat. Med. 9 (2003) 108–111.

    Article  Google Scholar 

  3. B. G. Min and K. Sun, The total artificial heart and implantable biventricular assist device,J. Artif. Organs. 5 (2002) 147–148.

    Article  Google Scholar 

  4. H. Matsuda and G. Matsumiya, Current status of left ventricular assist devices: the role in bridge to heart transplanation and future perspectives,J. Artif. Organs. 6 (2003) 157–161.

    Article  Google Scholar 

  5. O. H. Frazier, R. D. Dowling, L. A. Gray, N. A. Shah, T. Pool and I. Gregoric, The total artificial heart: where we stand,Cardiology. 101 (2004) 117–121.

    Article  Google Scholar 

  6. J. M. Tarbell, J. P. Gunshinan, D. B. Geselowitz, G. Rosenberg, K. K. Shung and W. S. Pierce, Pulsed ultrasonic doppler velocity measurements inside a left ventricular assist device,ASME J. Biomech. Engrg. 108 (1986) 232–238.

    Article  Google Scholar 

  7. W. Jin and C. Clark, Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD),J. Biomech. 26 (1993) 697–707.

    Article  Google Scholar 

  8. J. T. Baldwin, S. Deutsch, D. B. Geselowitz and J. M. Tarbell, LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle,ASME J. Biomech. Engrg. 116 (1994) 190–200.

    Article  Google Scholar 

  9. P. Hochareon, K. B. Manning, A. A. Fontaine J. M. Tarbell and S. Deutsch, Fluid dynamic analysis of the 50 cc Penn State artificial heart under physiological operating conditions using particle image velocimetry,ASME J. Biomech. Engrg. 126 (2004) 585–593.

    Article  Google Scholar 

  10. P. C. Lu, J. S. Liu, C. S. Tung, K. K. T. Cheng and J. Wei, An investigation of the flow within the phoenix artificial heart,Biomed. Eng. Appl. Basis. Comm. 11 (1999) 277–284.

    Google Scholar 

  11. P. Verdonck, The role of computational fluid dynamics for artificial organ design,Artif. Organs. 26 (2002) 569–570.

    Article  Google Scholar 

  12. C. Kiris, D. Kwak, S. Rogers and I. D. Chang, Computational approach for probing the flow through artificial heart devices,ASME J. Biomech. Engrg. 119 (1997) 452–459.

    Article  Google Scholar 

  13. C. S. Konig, C. Clark and M. R. Mokhtarzadeh-Dehghan, Investigation of unsteady flow in a model of a ventricular assist device by numerical modelling and comparison with experiment,Med. Engrg. Phys. 21 (1999) 53–64.

    Article  Google Scholar 

  14. Q. Zhang and T. Hisada, Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method,Comp. Methods Appl. Mech. Engrg. 190 (2001) 6341–6357.

    Article  MATH  Google Scholar 

  15. E. B. Shim, J. Y. Yeo, H. J. Ko, C. H. Youn, Y. R. Lee, C. Y. Park, B. G. Min and K. Sun, Numerical analysis of the three-dimensional blood flow in the Korean artificial heart,Artif. Organs 27 (2003) 49–60.

    Article  Google Scholar 

  16. M. G. Doyle, Simulation of blood flow in a ventricular assistant device with fluid-structure interaction effects, Thesis, University of Ottawa, Ottawa, Canada, (2004)

    Google Scholar 

  17. M. Rosenfeld, I. Avrahami and S. Einav, Unsteady effects on the flow across tilting disk valves,ASME J. Biomech. Engrg. 124 (2002) 21–29.

    Article  Google Scholar 

  18. M. L. Liu and C. W. S. To, Hybrid strain based three-node flat triangular shell elements — I. Nonlinear theory and incremental formulation,Comput. Struct. 54 (1995) 1031–1056.

    Article  MATH  Google Scholar 

  19. T. J. Pedley, The fluid mechanics of large blood vessels, Cambridge University Press, (1980).

  20. D. Kuhl and E. Ramm, Generalized energy-momentum method for non-linear adaptive shell dynamics,Comp. Methods Appl. Mech. Engrg. 178 (1999) 343–366.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Argyris, M. Papadrakakis and Z. S. Mouroutis, Nonlinear dynamic analysis of shells with the triangular element TRIC,Comp. Methods Appl Mech. Engrg. 192 (2003) 3005–3038.

    Article  MATH  Google Scholar 

  22. C. Bachmann, G. Hugo, G. Rosenberg, S. Deutsch, A. Frontaine and J. M. Tarbell, Fluid dynamics of a pediatric ventricular assist device,Artif. Organs. 24 (2000) 362–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.L., Liu, Y. & Yang, J.M. Unsteady flow and diaphragm motion in total artificial heart. J Mech Sci Technol 21, 1869–1875 (2007). https://doi.org/10.1007/BF03177442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03177442

Keywords

Navigation