Skip to main content
Log in

Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties

  • Food Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A combination of eight strains comprising ofLactobacillus plantarum, Enterococcus faecium andLeuconostoc mesenteroides subsp.mesenteroides isolated from molasses, olives, beer and kefir were studied for growth at low pH and ox-bile resistance. pH neutralised cell-free supernatants from 24-h-old cultures inhibited the growth ofEnterococcus faecium, Lactobacillus sakei, Lactococcus lactis subsp.lactis, Listeria innocua andListeria ivanovii subsp.ivanovii. Good growth was recorded in MRS broth supplemented with 0.3% (w/v) ox-bile.Lactobacillus plantarum ST28MS and ST26MS,Enterococcus faecium ST311LD andLeuconostoc mesenteroides subsp.mesenteroides ST33LD grew well in the presence of 0.6% (w/v) ox-bile. All eight strains grew well in MRS broth, adjusted to pH 7.0. Good growth ofEnterococcus faecium ST311LD,Leuconostoc mesenteroides subsp.mesenteroides ST33LD andLactobacillus plantarum 423 was recorded in MRS broth with an initial pH of 4.0. Auto cell-aggregation ranged from 74.3% forLactobacillus plantarum ST23LD to 95.4% forLactobacillus plantarum ST28MS. Different levels of co-aggregation were recorded between the eight strains andEnterococcus faecium HKLHS,Lactobacillus sakei DSM 20017,Lactococcus lactis subsp.lactis HV219,Listeria innocua LMG 13568 and UWC N27, andListeria ivanovii subsp.ivanovii ATCC 19119. Growth of the eight strains was inhibited by several antibiotics and anti-inflammatory medicaments containing ibuprofen, hydrochlorothiaziden and thioridazine hydrochlorid. Sodium diclofenac inhibited the growth ofLactobacillus plantarum ST8KF and ST341LD,Enterococcus faecium ST311LD andLeuconostoc mesenteroides subsp.mesenteroides ST33LD. Dimenhydrinate inhibited the growth of onlyLactobacillus plantarum ST8KF. Adherence to Caco-2 cells ranged from 8.0 to 1.3%. All eight strains contain theMub, MapA andEF-Tu genes, as determined by amplification with gene-specific primers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alterman E.W.M.R., Azcarate-Peril M.A., Barrangou R., Buck B.L., McAuliffe O., Souther N., Dobson A., Duong T., Callanan M., Lick S., Hamrick A., Cano R., Klaenhammer T.D. (2005). Complete genome sequence of the probiotic lactic acid bacteriumLactobacillus acidophilus NCFM. Proc. Nat. Acad. Sci., 102: 3906–3912.

    Article  Google Scholar 

  • Boekhorst J., Wells M., Kleerebezem M., Siezen R.J. (2006). The predicted secretome ofLactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology, 152: 3175–3183.

    Article  CAS  PubMed  Google Scholar 

  • Boris S., Barbes C. (2000). Role played by lactobacilli in controlling the population of vaginal pathogens. Microb. Infect., 4: 543–546.

    Article  Google Scholar 

  • Brink M., Todorov S.D., Martin J.H., Senekal M., Dicks L.M.T. (2006). The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. J. Appl. Microbiol., 100: 813–820.

    Article  CAS  PubMed  Google Scholar 

  • Caridi A. (2002). Selection ofEscherichia coli-inhibiting strains ofLactobacillus paracasei subsp.paracasei. J. Ind. Microbiol. Biotechnol., 29: 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Chan E.S., Zhang, Z. (2005). Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochem., 40: 3346–3351.

    Article  CAS  Google Scholar 

  • Courvalin P. (2006). Antibiotic resistance: The pros and cons of probiotics. Digestive and Liver Disease, 38 (Suppl. 2), S261–265.

    Article  Google Scholar 

  • Dellaglio F.V., Bottazzi, Trostelli L.D. (1973). Deoxyribonucleic acid homology and vase composition in some thermophilic lactobacilli. J. Gen. Microbiol., 74: 289–297.

    CAS  PubMed  Google Scholar 

  • De Vries M.C., Vaughan E.E., Kleerebezem M., De Vos W.M. (2006).Lactobacillus plantarum — survivor, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J., 16: 1018–1028.

    Article  Google Scholar 

  • Drosinos E.H., Mataragas M., Metaxopoulos J. (2006). Modeling of growth and bacteriocin production byLeuconostoc mesenteroides E131. Meat Sci., 74: 690–696.

    Article  CAS  Google Scholar 

  • Erdinc F.S., Yetkin M.A., Hatipoglu C.A., Yucel M., Karakoc A.E., Cevik M.A., Tulek N. (2006). Five-year surveillance of nosocomial infections in Ankara Training and Research Hospital. J. Hosp. Infect., 64: 391–396.

    Article  CAS  PubMed  Google Scholar 

  • Fontán M.C.G., Lorenzo J.M., Parada A., Franco I., Carballo J. (2007). Microbiological characteristics of “androlla”, a Spanish traditional pork sausage. Food Microbiol., 24: 52–58.

    Article  Google Scholar 

  • Fooks L.J., Fuller R., Gibson G.R. (1999). Prebiotics, probiotics and human gut microbiology. Int. Dairy J., 9: 53–61.

    Article  Google Scholar 

  • Furtado G.H.C., Mendes R.E., Pignatari A.C.C., Wey S.B., Medeiros E.A.S. (2006). Risk factors for vancomycin-resistantEnterococcus faecalis bacteremia in hospitalized patients: An analysis of two case-control studies. Am. J. Inf. Control, 34: 447–451.

    Article  Google Scholar 

  • Gaucher E.A., Miyamoto M.M., Benner S.A. (2001). Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. Proc. Nat. Acad. Sci. USA, 98: 548–542.

    Article  CAS  PubMed  Google Scholar 

  • Granato D.G.E.B., Pridmore R.D., Marvin L., Rouvet M., Corthesy-Theulaz I.E. (2004). Cell surface-associated elongation factor Tu mediates the attachment ofLactobacillus johnsonii NCC533(La1) to human intestinal cells and mucins. Infect. Immun., 72: 2160–2169.

    Article  CAS  PubMed  Google Scholar 

  • Guipta P.K., Mital B.K., Garg S.K. (1996). Characterization ofLactobacillus acidophilus strains for use as dietary adjunct. Int. J. Food Microbiol., 29: 105–109.

    Article  Google Scholar 

  • Haller D., Colbus H., Ganzle M.G., Scherenbacher P., Bode C., Hammes W.P. (2001). Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: A comparativein vitro study between bacteria of intestinal and fermented food origin. Syst. Appl. Microbiol., 24: 218–226.

    Article  CAS  PubMed  Google Scholar 

  • Havenaar R., Ten Brink B., Huis in’t Veld J.H.C. (1992). Selection of strains for probiotic use. In: Fuller R., Ed., Probiotics: The Scientific Basis, Chapman and Hall, London.

    Google Scholar 

  • Herreros M.A., Arenas R., Sandoval M.H., Castro J.M., Fresno J.M., Tornadijo M.E. (2007). Effect of addition of native cultures on characteristics of Armada cheese manufactured with pasteurized milk: A preliminary study. Int. Dairy, 17: 328–335.

    Article  CAS  Google Scholar 

  • Ivanova I., Miteva V., Stefanova Ts., Pantev A., Budakov I., Danova S., Moncheva P., Nikolova I., Dousset X., Boyaval P. (1998). Characterization of a bacteriocin produced byStreptococcus thermophilus 81. Int. J. Food Microbiol., 42: 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezern M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O.P., Leer R., Tarchini R., Peters S.A., Sandbrink H.M., Fiers M.W.E.J., Stiekema W., Lankhorst R.M.K., Bron P.A., Hoffer S.M., Groot M.N.N., Kerkhoven R., de Vries M., Ursing B., de Vos W.M., Siezen R.J. (2003). Competitive genome sequence ofLactobacillus plantarum WCFS1. Proc. Nat. Acad. Sci. USA, 100: 1990–1995.

    Article  Google Scholar 

  • Lepargneur J.P., Rousseau V. (2002). Protective, role of theDoderlein flora. J. Gynecol. Obstr. Biol. Reprod., 31: 485–494.

    CAS  Google Scholar 

  • Malik A., Sakamoto M., Hanazaki S., Osawa M., Suzuki T., Tochigi M., Kakii K. (2003). Co-aggregation among non-flocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol., 69: 6056–6063.

    Article  CAS  PubMed  Google Scholar 

  • Mainville I., Arcand Y., Farnworth E.R. (2005). A dynamic model that simulates the human upper gastro-intestinal tract for the study of probiotics. Int. J. Food Microbiol., 99: 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Messi P., Bondi M., Sabia C., Battini, R., Manicardi G. (2001). Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by aLactobacillus plantarum strain. Int. J. Food Microbiol., 64: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Park Y.S., Lee J.Y., Kim Y.S., Shin D.H. (2002). Isolation and characterization of lactic acid bacteria from fesec of newborn baby and from dongchimi. J. Agric. Food Chem., 24: 2531–2536.

    Article  Google Scholar 

  • Park S.C., Hwang M.H., Kim Y.H., Kim J.C., Song J.C., Lee K.W., Jeong K.S., Rhee M.H., Kim K.S., Kim T.W. (2006). Comparison of pH and bile resistance ofLactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources. World J. Microbiol. Biotechnol., 22: 35–37.

    Article  CAS  Google Scholar 

  • Powell J.E., Witthuhn R.C., Todorov S.D., Dicks L.M.T. (2007). Characterization of bacteriocin ST8KF produced by a kefir isolateLactobacillus plantarum ST8KF. Int. Dairy J., 17: 190–198.

    Article  CAS  Google Scholar 

  • Ramiah K., Van Reenen C.A., Dicks L.M.T. (2007). Expression of the mucus adhesion genesMub andMapA, adhesion-like factorEF-Tu and bacteriocin geneplaA ofLactobacillus plantarum 423, monitored with real-time PCR. Int. J. Food Microbiol., 113: 405–409.

    Article  Google Scholar 

  • Ramiah K., Van Reenen C.A., Dicks L.M.T. (2008). Surfacebound proteins ofLactobacillus plantarum 423 that contributes to adhesion of Caco-2 cells, and their role in competitive exclusion and displacement ofClostridium sporogenes andEnterococcus faecalis. Research in Microbiology, 159: 470–475.

    Article  CAS  PubMed  Google Scholar 

  • Reid G., Burton J. (2002). Use ofLactobacillus to prevent infections by pathogenic bacteria. Microb. Infect., 4: 319–324.

    Article  Google Scholar 

  • Reid G., Friendship R. (2002). Alternatives to antibiotic use: probiotics for the gut. Anim. Biotechnol., 13: 97–112.

    Article  PubMed  Google Scholar 

  • Roos S., Jonsson H. (2002). A high-molecular-mass cell-surface protein fromLactobacillus reuteri 1063 adheres to mucus components. Microbiology, 148: 433–442.

    CAS  PubMed  Google Scholar 

  • Ruiz-Barba J.L., Floriano B., Maldonado-Barragán A., Jiménez-Díaz R. (2007). Molecular analysis of the 21-kb bacteriocin-encoding plasmid pEF1 fromEnterococcus faecium 6T1a. Plasmid, 57: 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Saarela M., Mogensen G., Fonden R., Matto J., Mattila-Sandholm T. (2002). Probiotic bacteria: safety, functional and technological properties. J. Bacteriol., 84: 197–215.

    Google Scholar 

  • Sajur S.A., Saguir F.M., Manca de Nadra M.C. (2007). Effect of dominant specie of lactic acid bacteria from tomato on natural microflora development in tomato purée. Food Control, 18: 594–600.

    Article  Google Scholar 

  • Satoh E., Leer R.J., Rojas M., Conway P.L., Pouwels P.H. (2000). The gene encoding the adhesion promoting protein MapA fromLactobacillus reuteri 104R is part of an operon whose expression is controlled by a mechanism of transcription attenuation, involving cysteine. Genebank Accession Number AJ 293860. Unpublished.

  • Temmerman R., Pot B., Huys G., Swings J. (2002). Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food. Microbiol., 81: 1–10.

    Article  Google Scholar 

  • Todorov S.D., Dicks L.M.T. (2005a).Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gramnegative bacteria. Enzyme Microb. Technol., 36: 318–326.

    Article  CAS  Google Scholar 

  • Todorov S.D., Dicks L.M.T. (2005b). Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J Basic Microbiol., 45: 312–322.

    Article  CAS  PubMed  Google Scholar 

  • Todorov S.D., Danova S.T., Van Reenen C.A., Meincken M., Dinkova G., Ivanova I.V., Dicks L.M.T. (2006). Characterization of bacteriocin HV219, produced byLactococcus lactis subsp.lactis HV219 isolated from human vaginal secretions. J. Basic Microbiol., 46: 226–238.

    Article  CAS  PubMed  Google Scholar 

  • Todorov S.D., Botes M., Danova S.T., Dicks L.M.T. (2007). Probiotic properties ofLactococcus lactis subsp.lactis HV219, isolated from human vaginal secretions. J. Appl. Microbiol., 103: 629–639.

    Article  CAS  PubMed  Google Scholar 

  • Todorov S.D., Botes M., Guigas C., Schillinger U., Wiid I., Wachsman M.B., Holzapfel W.H., Dicks L.M.T. (2008). Boza, a natural source of probiotic lactic acid bacteria. J. Appl. Microbiol., 104: 465–477.

    CAS  PubMed  Google Scholar 

  • Torres-Llanez M.J., Vallejo-Cordoba B., Díaz-Cinco M.E., Mazorra-Manzano M.A., González-Córdova A.F. (2006). Characterization of the natural microflora of artisanal Mexican Fresco cheese. Food Control, 17: 683–690.

    Article  Google Scholar 

  • Tuomola E.M., Salminen S. (1998). Adhesion of some probiotic and dairyLactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol., 41: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Van Reenen C.A., Dicks L.M.T., Chikindas M.L. (1998). Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced byLactobacillus plantarum. J. Appl. Microbiol., 84: 1131–1137.

    Article  PubMed  Google Scholar 

  • Velraeds M., Van De Belt-Gritter B., Van Der Mei H., Reid G., Busscher H. (1998). Interference in initial adhesion of uropathogenic bacteria and yeast and silicone rubber byLactobacillus acidophilus biosurfactant. J. Med. Microbiol., 47: 1081–1085.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorov, S.D., Dicks, L.M.T. Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann. Microbiol. 58, 661–670 (2008). https://doi.org/10.1007/BF03175572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175572

Key words

Navigation