Skip to main content
Log in

Development and characterisation of a recombinantSaccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to help lay the foundation for further development of xylose-fermentingSaccharomyces cerevisiae yeast strains through an approach that combined metabolic engineering and random mutagenesis in a recombinant haploid strain that overexpressed only two genes of the xylose pathway. Previously,S. cerevisiae strains, overexpressing heterologous genes encoding xylose reductase, xylitol dehydrogenase and the endogenousXKS1 xylulokinase gene, were randomly mutagenised to develop improved xylose-fermenting strains. In this study, two gene cassettes (ADH1 p -PsXYL1-ADH1 T andPGK1 p -PsXYL2-PGK1 T ) containing the xylose reductase (PsXYL1) and xylitol dehydrogenase (PsXYL2) genes from the xylose-fermenting yeast,Pichia stipitis, were integrated into the genome of a haploidS. cerevisiae strain (CEN.PK 2-1D). The resulting recombinant strain (YUSM 1001) over-expressing theP. stipitis XYL1 andXYL2 genes (but not the endogenousXKS1 gene) was subjected to ethyl methane sulfonate (EMS) mutagenesis. The resulting mutants were screened for faster growth rates on an agar medium containing xylose as the sole carbon source. A mutant strain (designated Y-X) that showed 20-fold faster growth in xylose medium in shake-flask cultures was isolated and characterised. In anaerobic batch fermentation, the Y-X mutant strain consumed 2.5-times more xylose than the YUSM 1001 parental strain and also produced more ethanol and glycerol. The xylitol yield from the mutant strain was lower than that from the parental strain, which did not produce glycerol and ethanol from xylose. The mutant also showed a 50% reduction in glucose consumption rate. Transcript levels ofXYL1, XYL2 andXKS1 and theGPD2 glycerol 3-phosphate dehydrogenase gene from the two strains were compared with real-time reverse transcription polymerase chain reaction (RT-PCR) analysis. The mutant showed 10–40 times higher relative expression of these four genes, which corresponded with either the higher activities of their encoded enzymes or by-product formation during fermentation. Furthermore, no mutations were observed in the mutant’s promoter sequences or the open reading frames of some of its key genes involved in carbon catabolite repression, glycerol production and redox balancing. The data suggest that the enhancement of the xylose fermentation properties of the Y-X mutant was made possible by increased expression of the xylose pathway genes, especially theXKS1 xylulokinase gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded byGPD1 andGPD2 have distinct roles in osmo-adaptation and redox regulation. EMBO J., 16: 128–132.

    Article  Google Scholar 

  • Attfield P.V., Bell P.J. (2006). Use of population genetics to derive nonrecombinantSaccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res., 6: 862–868.

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F.M., Brent R., Kingson R.E., Moore D.D., Seidman J.G., Smity J.A., Struhl K. (1995). Current Protocols in Molecular Biology. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Bailey J.E., (1991). Toward a science of metabolic engineering. Science, 252:1668–1675.

    Article  CAS  PubMed  Google Scholar 

  • Bakker B.M., Overkamp K.M., van Maris A.J., Kötter P., Luttik M.A., van Dijken J.P., Pronk J.T. (2001). Stoichiometry and compartmentation of NADH metabolism inSaccharomyces cerevisiae. FEMS Microbiol. Rev., 25: 15–37.

    Article  CAS  PubMed  Google Scholar 

  • Björkqvist S., Ansell R., Adler L., Lidén G. (1997). Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants ofSaccharomyces cerevisiae. Appl. Environ. Microbiol., 63: 128–132.

    PubMed  Google Scholar 

  • Bleve G., Rizzotti L., Dellaglio F., Torrian, S. (2003). Development of reverse-transcription (RT)-PCR and real time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl. Environ. Microbiol., 69: 4116–4122.

    Article  CAS  PubMed  Google Scholar 

  • Bruinenberg P.M., de Bot P.H.M., van Dijken J.P., Scheffers W.A. (1984). NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol., 19: 256–260.

    Article  CAS  Google Scholar 

  • Chiang L.C., Gong C.S., Chen L.F., Tsao G. (1981). D-Xylulose fermentation bySaccharomyces cerevisiae. Appl. Environ. Microbiol., 42: 284–289.

    CAS  PubMed  Google Scholar 

  • Christensen L.H., Schulze U., Nielsen J., Villadsen J. (1995). Acoustic off-gas analyzer for bioreactors: precision, accuracy and dynamics of detection. Chem. Eng. Sci., 50: 2601–2610.

    Article  CAS  Google Scholar 

  • Divol B., Miot-Sertier C., Lonvaud-Funel A. (2006). Genetic characterization of strains ofSaccharomyces cerevisiae responsible for ‘refermentation’ inBotrytis-affected wines. J. Appl. Microbiol., 100: 516–526.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hägerdal B. (2000). Anaerobic xylose fermentation by recombinantSaccharomyces cerevisiae carryingXYL1, XYL2, andXKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol., 66: 3381–3386.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson A., Hofmeyr J-H. S., Pedler S., Hahn-Hägerdal B. (2001). The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xyloseutilisingSaccharomyces cerevisiae. Enzyme Microb. Technol., 29: 288–297.

    Article  CAS  Google Scholar 

  • Entian K.D., Kötter P. (1998). Yeast mutant and plasmid collections. In: Brown A.J.P., Tuite M.F., Eds, Yeast Gene Analysis, Vol. 26, Academic Press, London, United Kingdom, pp. 431–449.

    Chapter  Google Scholar 

  • Gietz D., St. Jean A., Woods R.A., Schiestl R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res., 20: 1425.

    Article  CAS  PubMed  Google Scholar 

  • Giuletti A., Overbergh L., Valckx D., Decallonne B., Bouillon R., Mathieu C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 25: 386–401.

    Article  CAS  Google Scholar 

  • Hallborn J., Walfridsson M., Airaksinen U., Ojamo H. Hahn-Hägerdal B., Penttilä M., Keränen S. (1991). Xylitol production by recombinantSaccharomyces cerevisiae. Biotechnology, 9: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  • Ho N.W., Chen Z., Brainard A.P. (1998). Genetically engineeredSaccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol., 64: 1852–1859.

    CAS  PubMed  Google Scholar 

  • Jeppsson H., Yu S., Hahn-Hägerdal B. (1996). Xylulose and glucose fermentation bySaccharomyces cerevisiae in chemostat culture. Appl. Environ. Microbiol., 62: 1705–1709.

    CAS  PubMed  Google Scholar 

  • Jeppsson M., Träff K., Johansson B., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinantSaccharomyces cerevisiae. FEMS Yeast Res., 3: 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y.S., Ni H., Laplaza J.M., Jeffries T.W. (2003). Optimal growth and ethanol production from xylose by recombinantSaccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol., 69: 495–503.

    Article  CAS  PubMed  Google Scholar 

  • Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. (2001). Xylulokinase overexpression in two strains ofSaccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol., 67: 4249–4255.

    Article  CAS  PubMed  Google Scholar 

  • Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinantSaccharomyces cerevisiae using metabolic engineering. Yeast, 22: 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Karhumaa K., Fromanger R., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinantSaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 73: 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  • Kostrzynska M., Sopher C.R., Lee H. (1998). Mutational analysis of the role of the conserved lysine-270 in thePichia stipitis xylose reductase. FEMS Microbiol. Lett., 159: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Kötter P., Amore R., Hollenberg C.P., Ciriacy M. (1990). Isolation and characterization of thePichia stipitis xylitol dehydrogenase gene,XYL2, and construction of a xylose-utilizingSaccharomyces cerevisiae transformant. Curr. Genet., 18: 463–500.

    Article  Google Scholar 

  • Kötter P., Ciriacy M. (1993). Xylose fermentation bySaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 38: 776–783.

    Article  Google Scholar 

  • Kuyper M., Winkler A.A., van Dijken J.P., Pronk J.T. (2004). Minimal metabolic engineering ofSaccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle? FEMS Yeast Res., 4: 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Lynd L.R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy. Environ., 21: 403–465.

    Article  Google Scholar 

  • Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 66: 506–577.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29: 2002–2007.

    Article  Google Scholar 

  • Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett., 339: 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Richard P., Toivari M.H., Penttilä M. (2000). The role of xylulokinase inSaccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett., 190: 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Rigoulet M., Aguilaniu H., Avéret N., Bunoust O., Camougrand N., Grandier-Vazeille X., Larsson C., Pahlman I-L., Manon S., Gustafsson L. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeastSaccharomyces cerevisiae. Mol. Cell. Biochem., 256/257: 73–81.

    Article  CAS  Google Scholar 

  • Rizzi M., Erlemann P., Bui-Thanh N.-A., Dellweg H. (1988). Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase fromPichia stipitis. Appl. Microbiol. Biotechnol., 29: 148–154.

    Article  CAS  Google Scholar 

  • Rizzi M., Harwart K., Erlemann P., Bui-Thahn N.-A., Dellweg. H. (1989). Purification and properties of the NAD+-xylitol-dehydrogenase from the yeastPichia stipitis. J. Ferment. Bioeng., 67: 20–24.

    Article  CAS  Google Scholar 

  • Rozen S., Skaletsky H.J. (2000). Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S., Misener S., Eds, Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, Totowa, NJ, pp. 365–386.

    Google Scholar 

  • Salusjärvi L., Poutanen M., Pitkänen J.P., Koivistoinen H., Aristidou A., Kalkkinen N., Ruohonen L., Penttilä M. (2003). Proteome analysis of recombinant xylose-fermentingSaccharomyces cerevisiae. Yeast, 20: 295–314.

    Article  PubMed  CAS  Google Scholar 

  • Sauer U. (2001). Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol., 73: 129–169.

    CAS  PubMed  Google Scholar 

  • Senac T., Hahn-Hägerdal B. (1990). Intermediary metabolite concentrations in xylulose- and glucose-fermentingSaccharomyces cerevisiae cells. Appl. Environ. Microbiol., 56: 120–126.

    CAS  PubMed  Google Scholar 

  • Sherman F., Fink G.R., Hicks J. (1991). Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Sonderegger M., Sauer U. (2003). Evolutionary engineering ofSaccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol., 69: 1990–1998.

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger M., Jeppsson M., Hahn-Hägerdal B., Sauer U. (2004). Molecular basis for anaerobic growth ofSaccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol., 70: 2307–2317.

    Article  CAS  PubMed  Google Scholar 

  • Tantirungkij M., Nakashima N., Seki T., Yoshida T. (1993). Construction of xylose-assimilatingSaccharomyces cerevisiae. J. Ferment. Bioeng., 75: 83–88.

    Article  CAS  Google Scholar 

  • Thanvanthri Gururajan V., Pretorius I.S., Cordero Otero R.R. (2007). Molecular cloning and functional expression of a novelNeurospora crassa xylose reductase inSaccharomyces cerevisiae in the development of a xylose fermenting strain. Ann. Microbiol., 57 (1): 223–231.

    Article  CAS  Google Scholar 

  • Toivari M.H., Aristidou A., Rouhonen L., Penttilä M. (2001). Conversion of xylose to ethanol by recombinantSaccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metabol. Eng., 3: 236–249.

    Article  CAS  Google Scholar 

  • Toivari M.H., Salusjärvi L., Ruohonen L., Penttilä M. (2004). Endogenous xylose pathway inSaccharomyces cerevisiae. Appl. Environ. Microbiol., 70: 3681–3686.

    Article  CAS  PubMed  Google Scholar 

  • Träff K.L., Jonsson L.J., Hahn-Hägerdal B. (2002). Putative xylose and arabinose reductases inSaccharomyces cerevisiae. Yeast, 19: 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  • Träff-Bjerre K.L., Jeppsson M., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2004). Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinantSaccharomyces cerevisiae. Yeast, 21: 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Valadi A., Granath K., Gustafsson L., Adler L. (2004). Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J. Biol. Chem., 279: 39677–39685.

    Article  CAS  PubMed  Google Scholar 

  • Verduyn C., van Kleef R., Frank J., Schreuder H., van Dijken J.P., Scheffers W.A. (1985). Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeastPichia stipitis. Biochem. J., 226: 664–677.

    Google Scholar 

  • Verduyn C., Postma E., Scheffers W.A., van Dijken J.P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8: 501–517.

    Article  CAS  PubMed  Google Scholar 

  • Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hägerdal B., Otero R.R. (2003a). Generation of the improved recombinant xylose-utilizingSaccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison withPichia stipitis CBS 6054. FEMS Yeast Res., 3: 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Wahlbom C.F., Cordero Otero R.R., van Zyl W.H., Hahn-Hägerdal B., Jonsson L.J. (2003b). Molecular analysis of aSaccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol., 69: 740–746.

    Article  CAS  PubMed  Google Scholar 

  • Walfridsson M., Anderlund M., Bao X., Hahn-Hägerdal B. (1997). Expression of different levels of enzymes fromPichia stipitis XYL1 andXYL2 genes inSaccharomyces cerevisiae and its effects on product formation during xylose utilization. Appl. Microbiol. Biotechnol., 48: 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Wang P.Y., Schneider H. (1980). Growth of yeasts on D-xylulose 1. Can. J. Microbiol., 26: 1165–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak S. Pretorius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanvanthri Gururajan, V., Van Rensburg, P., Hahn-Hägerdal, B. et al. Development and characterisation of a recombinantSaccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. Ann. Microbiol. 57, 599–607 (2007). https://doi.org/10.1007/BF03175361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175361

Key words

Navigation